Normalized defining polynomial
\( x^{16} + 24x^{14} + 212x^{12} + 920x^{10} + 2138x^{8} + 2680x^{6} + 1724x^{4} + 504x^{2} + 49 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(8680963974111420152283136\)
\(\medspace = 2^{66}\cdot 7^{6}\)
|
| |
| Root discriminant: | \(36.20\) |
| |
| Galois root discriminant: | $2^{67/16}7^{1/2}\approx 48.207224374927556$ | ||
| Ramified primes: |
\(2\), \(7\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{128}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{5404}a^{14}+\frac{115}{5404}a^{12}-\frac{131}{5404}a^{10}-\frac{1}{28}a^{8}-\frac{1915}{5404}a^{6}+\frac{1343}{5404}a^{4}-\frac{355}{5404}a^{2}+\frac{89}{772}$, $\frac{1}{5404}a^{15}+\frac{115}{5404}a^{13}-\frac{131}{5404}a^{11}-\frac{1}{28}a^{9}-\frac{1915}{5404}a^{7}+\frac{1343}{5404}a^{5}-\frac{355}{5404}a^{3}+\frac{89}{772}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{42}$, which has order $42$ (assuming GRH) |
| |
| Narrow class group: | $C_{42}$, which has order $42$ (assuming GRH) |
| |
| Relative class number: | $42$ (assuming GRH) |
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{21}{193}a^{14}+\frac{485}{193}a^{12}+\frac{4004}{193}a^{10}+\frac{161}{2}a^{8}+\frac{30037}{193}a^{6}+\frac{27624}{193}a^{4}+\frac{10108}{193}a^{2}+\frac{1269}{386}$, $\frac{15}{5404}a^{14}+\frac{187}{2702}a^{12}+\frac{3439}{5404}a^{10}+\frac{19}{7}a^{8}+\frac{25315}{5404}a^{6}-\frac{1411}{2702}a^{4}-\frac{37749}{5404}a^{2}-\frac{197}{193}$, $\frac{64}{1351}a^{14}+\frac{6473}{5404}a^{12}+\frac{30517}{2702}a^{10}+\frac{1459}{28}a^{8}+\frac{170607}{1351}a^{6}+\frac{850433}{5404}a^{4}+\frac{239621}{2702}a^{2}+\frac{11397}{772}$, $\frac{705}{5404}a^{14}+\frac{16227}{5404}a^{12}+\frac{66631}{2702}a^{10}+\frac{1331}{14}a^{8}+\frac{989857}{5404}a^{6}+\frac{930603}{5404}a^{4}+\frac{198427}{2702}a^{2}+\frac{4449}{386}$, $\frac{117}{5404}a^{14}+\frac{2647}{5404}a^{12}+\frac{10575}{2702}a^{10}+\frac{102}{7}a^{8}+\frac{148821}{5404}a^{6}+\frac{157131}{5404}a^{4}+\frac{56915}{2702}a^{2}+\frac{1397}{193}$, $\frac{603}{5404}a^{14}+\frac{6977}{2702}a^{12}+\frac{115551}{5404}a^{10}+\frac{1165}{14}a^{8}+\frac{866351}{5404}a^{6}+\frac{385325}{2702}a^{4}+\frac{245275}{5404}a^{2}+\frac{1261}{386}$, $\frac{67}{1351}a^{14}+\frac{3251}{2702}a^{12}+\frac{58111}{5404}a^{10}+\frac{1307}{28}a^{8}+\frac{140544}{1351}a^{6}+\frac{302903}{2702}a^{4}+\frac{262875}{5404}a^{2}+\frac{5517}{772}$
|
| |
| Regulator: | \( 20726.065235 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 20726.065235 \cdot 42}{2\cdot\sqrt{8680963974111420152283136}}\cr\approx \mathstrut & 0.35883196670 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.14336.1, \(\Q(\zeta_{16})^+\), 4.4.7168.1, 8.0.736586891264.1, 8.0.736586891264.2, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | deg 16 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.8.0.1}{8} }^{2}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.16.66h1.513 | $x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 34$ | $16$ | $1$ | $66$ | 16T26 | $$[2, 3, \frac{7}{2}, 4, 5]$$ |
|
\(7\)
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 7.2.1.0a1.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 7.2.2.2a1.2 | $x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |