Properties

Label 16.0.868...136.1
Degree $16$
Signature $[0, 8]$
Discriminant $8.681\times 10^{24}$
Root discriminant \(36.20\)
Ramified primes $2,7$
Class number $42$ (GRH)
Class group [42] (GRH)
Galois group $D_4:C_4$ (as 16T26)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 + 24*x^14 + 212*x^12 + 920*x^10 + 2138*x^8 + 2680*x^6 + 1724*x^4 + 504*x^2 + 49)
 
Copy content gp:K = bnfinit(y^16 + 24*y^14 + 212*y^12 + 920*y^10 + 2138*y^8 + 2680*y^6 + 1724*y^4 + 504*y^2 + 49, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 24*x^14 + 212*x^12 + 920*x^10 + 2138*x^8 + 2680*x^6 + 1724*x^4 + 504*x^2 + 49);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 + 24*x^14 + 212*x^12 + 920*x^10 + 2138*x^8 + 2680*x^6 + 1724*x^4 + 504*x^2 + 49)
 

\( x^{16} + 24x^{14} + 212x^{12} + 920x^{10} + 2138x^{8} + 2680x^{6} + 1724x^{4} + 504x^{2} + 49 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(8680963974111420152283136\) \(\medspace = 2^{66}\cdot 7^{6}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(36.20\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{67/16}7^{1/2}\approx 48.207224374927556$
Ramified primes:   \(2\), \(7\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_2^2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{4}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{2}-\frac{1}{4}$, $\frac{1}{4}a^{11}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{4}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{4}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{5404}a^{14}+\frac{115}{5404}a^{12}-\frac{131}{5404}a^{10}-\frac{1}{28}a^{8}-\frac{1915}{5404}a^{6}+\frac{1343}{5404}a^{4}-\frac{355}{5404}a^{2}+\frac{89}{772}$, $\frac{1}{5404}a^{15}+\frac{115}{5404}a^{13}-\frac{131}{5404}a^{11}-\frac{1}{28}a^{9}-\frac{1915}{5404}a^{7}+\frac{1343}{5404}a^{5}-\frac{355}{5404}a^{3}+\frac{89}{772}a$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Ideal class group:  $C_{42}$, which has order $42$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{42}$, which has order $42$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 
Relative class number:   $42$ (assuming GRH)

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{21}{193}a^{14}+\frac{485}{193}a^{12}+\frac{4004}{193}a^{10}+\frac{161}{2}a^{8}+\frac{30037}{193}a^{6}+\frac{27624}{193}a^{4}+\frac{10108}{193}a^{2}+\frac{1269}{386}$, $\frac{15}{5404}a^{14}+\frac{187}{2702}a^{12}+\frac{3439}{5404}a^{10}+\frac{19}{7}a^{8}+\frac{25315}{5404}a^{6}-\frac{1411}{2702}a^{4}-\frac{37749}{5404}a^{2}-\frac{197}{193}$, $\frac{64}{1351}a^{14}+\frac{6473}{5404}a^{12}+\frac{30517}{2702}a^{10}+\frac{1459}{28}a^{8}+\frac{170607}{1351}a^{6}+\frac{850433}{5404}a^{4}+\frac{239621}{2702}a^{2}+\frac{11397}{772}$, $\frac{705}{5404}a^{14}+\frac{16227}{5404}a^{12}+\frac{66631}{2702}a^{10}+\frac{1331}{14}a^{8}+\frac{989857}{5404}a^{6}+\frac{930603}{5404}a^{4}+\frac{198427}{2702}a^{2}+\frac{4449}{386}$, $\frac{117}{5404}a^{14}+\frac{2647}{5404}a^{12}+\frac{10575}{2702}a^{10}+\frac{102}{7}a^{8}+\frac{148821}{5404}a^{6}+\frac{157131}{5404}a^{4}+\frac{56915}{2702}a^{2}+\frac{1397}{193}$, $\frac{603}{5404}a^{14}+\frac{6977}{2702}a^{12}+\frac{115551}{5404}a^{10}+\frac{1165}{14}a^{8}+\frac{866351}{5404}a^{6}+\frac{385325}{2702}a^{4}+\frac{245275}{5404}a^{2}+\frac{1261}{386}$, $\frac{67}{1351}a^{14}+\frac{3251}{2702}a^{12}+\frac{58111}{5404}a^{10}+\frac{1307}{28}a^{8}+\frac{140544}{1351}a^{6}+\frac{302903}{2702}a^{4}+\frac{262875}{5404}a^{2}+\frac{5517}{772}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 20726.065235 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 20726.065235 \cdot 42}{2\cdot\sqrt{8680963974111420152283136}}\cr\approx \mathstrut & 0.35883196670 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 + 24*x^14 + 212*x^12 + 920*x^10 + 2138*x^8 + 2680*x^6 + 1724*x^4 + 504*x^2 + 49) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 + 24*x^14 + 212*x^12 + 920*x^10 + 2138*x^8 + 2680*x^6 + 1724*x^4 + 504*x^2 + 49, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 24*x^14 + 212*x^12 + 920*x^10 + 2138*x^8 + 2680*x^6 + 1724*x^4 + 504*x^2 + 49); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 + 24*x^14 + 212*x^12 + 920*x^10 + 2138*x^8 + 2680*x^6 + 1724*x^4 + 504*x^2 + 49); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4:C_4$ (as 16T26):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 32
The 14 conjugacy class representatives for $D_4:C_4$
Character table for $D_4:C_4$

Intermediate fields

\(\Q(\sqrt{2}) \), 4.4.14336.1, \(\Q(\zeta_{16})^+\), 4.4.7168.1, 8.0.736586891264.1, 8.0.736586891264.2, 8.8.3288334336.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 16 sibling: deg 16
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.8.0.1}{8} }^{2}$ ${\href{/padicField/5.4.0.1}{4} }^{4}$ R ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{6}{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ ${\href{/padicField/19.8.0.1}{8} }^{2}$ ${\href{/padicField/23.2.0.1}{2} }^{8}$ ${\href{/padicField/29.8.0.1}{8} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.16.66h1.513$x^{16} + 16 x^{13} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 8 x^{6} + 16 x^{5} + 16 x^{3} + 34$$16$$1$$66$16T26$$[2, 3, \frac{7}{2}, 4, 5]$$
\(7\) Copy content Toggle raw display 7.2.1.0a1.1$x^{2} + 6 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
7.2.1.0a1.1$x^{2} + 6 x + 3$$1$$2$$0$$C_2$$$[\ ]^{2}$$
7.2.2.2a1.2$x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
7.2.2.2a1.2$x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$
7.2.2.2a1.2$x^{4} + 12 x^{3} + 42 x^{2} + 36 x + 16$$2$$2$$2$$C_2^2$$$[\ ]_{2}^{2}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)