Properties

Label 16.0.86589581483...8173.5
Degree $16$
Signature $[0, 8]$
Discriminant $13^{7}\cdot 53^{14}$
Root discriminant $99.10$
Ramified primes $13, 53$
Class number $8$ (GRH)
Class group $[2, 4]$ (GRH)
Galois group 16T1281

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![61861, -367208, 996415, -1515269, 1171759, -7668, -434369, 140126, 37685, -19742, 4161, 1187, -352, 71, 4, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 4*x^14 + 71*x^13 - 352*x^12 + 1187*x^11 + 4161*x^10 - 19742*x^9 + 37685*x^8 + 140126*x^7 - 434369*x^6 - 7668*x^5 + 1171759*x^4 - 1515269*x^3 + 996415*x^2 - 367208*x + 61861)
 
gp: K = bnfinit(x^16 - 3*x^15 + 4*x^14 + 71*x^13 - 352*x^12 + 1187*x^11 + 4161*x^10 - 19742*x^9 + 37685*x^8 + 140126*x^7 - 434369*x^6 - 7668*x^5 + 1171759*x^4 - 1515269*x^3 + 996415*x^2 - 367208*x + 61861, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + 4 x^{14} + 71 x^{13} - 352 x^{12} + 1187 x^{11} + 4161 x^{10} - 19742 x^{9} + 37685 x^{8} + 140126 x^{7} - 434369 x^{6} - 7668 x^{5} + 1171759 x^{4} - 1515269 x^{3} + 996415 x^{2} - 367208 x + 61861 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(86589581483779140722048687468173=13^{7}\cdot 53^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $99.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{151640136644979391830992437891617199148644771} a^{15} + \frac{12031235259261290924576516793974994053617649}{151640136644979391830992437891617199148644771} a^{14} - \frac{63770519436681305519167930350298453838108913}{151640136644979391830992437891617199148644771} a^{13} - \frac{27070267031235646088045013656575618220910254}{151640136644979391830992437891617199148644771} a^{12} - \frac{34906751568214028755278440487826533791974740}{151640136644979391830992437891617199148644771} a^{11} - \frac{2012854342625698471509835671996365132527092}{151640136644979391830992437891617199148644771} a^{10} + \frac{49290242890893004161151978152663748613484529}{151640136644979391830992437891617199148644771} a^{9} - \frac{65601606367726502838320342927389281901006087}{151640136644979391830992437891617199148644771} a^{8} + \frac{53984652250218982188720227380174387375041525}{151640136644979391830992437891617199148644771} a^{7} + \frac{12256051295352880872881010183279583776424882}{151640136644979391830992437891617199148644771} a^{6} + \frac{50565890585458348441952498728896224607144413}{151640136644979391830992437891617199148644771} a^{5} - \frac{7654565921767988296823382501012624995534256}{151640136644979391830992437891617199148644771} a^{4} + \frac{55673319506305480344873763772261122346659079}{151640136644979391830992437891617199148644771} a^{3} + \frac{54457509450877403974917669893469345915415332}{151640136644979391830992437891617199148644771} a^{2} + \frac{17097288760543859764763683264571202138333252}{151640136644979391830992437891617199148644771} a - \frac{8073282682422014196425432868462694327798300}{151640136644979391830992437891617199148644771}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 178826964.911 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1281:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 34 conjugacy class representatives for t16n1281
Character table for t16n1281 is not computed

Intermediate fields

\(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.3745777030801.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.3.2$x^{4} - 52$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$53$53.8.7.2$x^{8} - 212$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
53.8.7.2$x^{8} - 212$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$