Normalized defining polynomial
\( x^{16} - x^{15} - 102 x^{13} + 483 x^{12} + 979 x^{11} + 5581 x^{10} - 39994 x^{9} - 26277 x^{8} + 143486 x^{7} + 1574742 x^{6} - 1546998 x^{5} - 7251219 x^{4} - 9106744 x^{3} + 70841602 x^{2} - 60725949 x + 51239197 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86589581483779140722048687468173=13^{7}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{1}{13} a^{12} + \frac{5}{13} a^{11} - \frac{3}{13} a^{10} + \frac{6}{13} a^{9} - \frac{5}{13} a^{8} + \frac{1}{13} a^{7} + \frac{3}{13} a^{6} + \frac{4}{13} a^{5} + \frac{4}{13} a^{4} + \frac{5}{13} a^{3} + \frac{4}{13} a^{2} + \frac{2}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{14} + \frac{4}{13} a^{12} + \frac{5}{13} a^{11} - \frac{4}{13} a^{10} + \frac{2}{13} a^{9} + \frac{6}{13} a^{8} + \frac{2}{13} a^{7} + \frac{1}{13} a^{6} + \frac{1}{13} a^{4} - \frac{1}{13} a^{3} - \frac{2}{13} a^{2} + \frac{5}{13} a + \frac{6}{13}$, $\frac{1}{170622510485222938405441027861352780924706924578058791231} a^{15} - \frac{4319366398149451696079405411764271669369617938645350164}{170622510485222938405441027861352780924706924578058791231} a^{14} + \frac{4267901033040968419751085280098977799315172640813498937}{170622510485222938405441027861352780924706924578058791231} a^{13} - \frac{11895493567437071819128169792664282381716168588438376642}{170622510485222938405441027861352780924706924578058791231} a^{12} - \frac{20723202220681305040106893302409734102434179892270639475}{170622510485222938405441027861352780924706924578058791231} a^{11} - \frac{79330458205052069781917294193170437834262531827923804075}{170622510485222938405441027861352780924706924578058791231} a^{10} - \frac{44692748283550120183740646457585186934114893899143324695}{170622510485222938405441027861352780924706924578058791231} a^{9} + \frac{1525300822312093664317018065917385547122825632098649568}{3630266180536658263945553784284101721802274991022527473} a^{8} + \frac{62839845574736518395983340324504333816651006227826319185}{170622510485222938405441027861352780924706924578058791231} a^{7} - \frac{136650403922591146736120049577944408896272081233157459}{13124808498863302954264694450873290840362071121389137787} a^{6} + \frac{4940161953359553146245420806531712950955592645195064349}{13124808498863302954264694450873290840362071121389137787} a^{5} - \frac{75596421013521414887378370303370197177766133963712489854}{170622510485222938405441027861352780924706924578058791231} a^{4} + \frac{56669632335512630612648694514261004639396482233174892125}{170622510485222938405441027861352780924706924578058791231} a^{3} + \frac{35565953044500164558584269336385276942933635532201058453}{170622510485222938405441027861352780924706924578058791231} a^{2} + \frac{4937658655410544496793388754463277763478502855530014982}{170622510485222938405441027861352780924706924578058791231} a + \frac{31342566504905854738422137543650151374290192307674622463}{170622510485222938405441027861352780924706924578058791231}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 272231233.115 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1281 |
| Character table for t16n1281 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.3745777030801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |