Normalized defining polynomial
\( x^{16} - x^{15} - 3 x^{14} + 16 x^{13} - 36 x^{12} + 49 x^{11} + 308 x^{10} - 1196 x^{9} + 1233 x^{8} + 5196 x^{7} + 9868 x^{6} + 7953 x^{5} - 29020 x^{4} - 33488 x^{3} - 5819 x^{2} + 109503 x + 279841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86380562306022715087890625=5^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{30} a^{12} + \frac{1}{5} a^{11} - \frac{1}{3} a^{10} - \frac{1}{6} a^{9} - \frac{7}{15} a^{8} + \frac{3}{10} a^{6} + \frac{1}{3} a^{5} + \frac{1}{5} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{7}{15} a + \frac{1}{30}$, $\frac{1}{794113362390} a^{13} + \frac{3350826131}{264704454130} a^{12} + \frac{110488244731}{397056681195} a^{11} - \frac{52237280605}{158822672478} a^{10} + \frac{261866113081}{794113362390} a^{9} - \frac{36159685968}{132352227065} a^{8} + \frac{2200166893}{264704454130} a^{7} - \frac{16717935859}{34526667930} a^{6} + \frac{53950083801}{132352227065} a^{5} - \frac{89116133203}{794113362390} a^{4} + \frac{23165527127}{158822672478} a^{3} - \frac{130318358032}{397056681195} a^{2} - \frac{136395242177}{794113362390} a + \frac{4355001143}{11508889310}$, $\frac{1}{18264607334970} a^{14} - \frac{1}{18264607334970} a^{13} - \frac{241859715173}{18264607334970} a^{12} - \frac{8464342306891}{18264607334970} a^{11} - \frac{8832826167419}{18264607334970} a^{10} + \frac{6785617808293}{18264607334970} a^{9} - \frac{5541405781717}{18264607334970} a^{8} - \frac{210920299981}{794113362390} a^{7} - \frac{5502108115963}{18264607334970} a^{6} + \frac{1610987437723}{18264607334970} a^{5} - \frac{2846770435351}{18264607334970} a^{4} + \frac{3666864325831}{18264607334970} a^{3} - \frac{8932452719851}{18264607334970} a^{2} + \frac{69847832939}{794113362390} a + \frac{8976480761}{34526667930}$, $\frac{1}{2100429843521550} a^{15} + \frac{11}{1050214921760775} a^{14} + \frac{503}{2100429843521550} a^{13} + \frac{2090652852919}{140028656234770} a^{12} - \frac{265028329305068}{1050214921760775} a^{11} + \frac{535271113303591}{2100429843521550} a^{10} + \frac{223789121370517}{700143281173850} a^{9} - \frac{2194225192163}{45661518337425} a^{8} + \frac{968343783609499}{2100429843521550} a^{7} - \frac{321403185993277}{2100429843521550} a^{6} + \frac{25876649816017}{350071640586925} a^{5} + \frac{883302742147649}{2100429843521550} a^{4} - \frac{534010716395173}{2100429843521550} a^{3} - \frac{15150805801127}{45661518337425} a^{2} + \frac{4404272819}{264704454130} a - \frac{2277173166}{28772223275}$
Class group and class number
$C_{6}\times C_{12}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{127016319}{70014328117385} a^{15} + \frac{12161132}{14002865623477} a^{14} - \frac{381048957}{70014328117385} a^{13} + \frac{2032261104}{70014328117385} a^{12} - \frac{4572587484}{70014328117385} a^{11} + \frac{6223799631}{70014328117385} a^{10} + \frac{47462879623}{70014328117385} a^{9} - \frac{6604848588}{3044101222495} a^{8} + \frac{156611121327}{70014328117385} a^{7} + \frac{659976793524}{70014328117385} a^{6} + \frac{1253397035892}{70014328117385} a^{5} + \frac{8484149735551}{70014328117385} a^{4} - \frac{737202715476}{14002865623477} a^{3} - \frac{184935760464}{3044101222495} a^{2} - \frac{1397179509}{132352227065} a + \frac{1143146871}{5754444655} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249792.59056 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |