Normalized defining polynomial
\( x^{16} - 4 x^{15} + 49 x^{14} - 154 x^{13} + 861 x^{12} - 1822 x^{11} + 6096 x^{10} - 7367 x^{9} + 18077 x^{8} - 8493 x^{7} + 27841 x^{6} + 3012 x^{5} + 28871 x^{4} + 19024 x^{3} + 19169 x^{2} + 9889 x + 1711 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86380562306022715087890625=5^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a + \frac{1}{10}$, $\frac{1}{10} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{6} + \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{2}{5}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a$, $\frac{1}{260} a^{12} - \frac{3}{260} a^{11} + \frac{2}{65} a^{10} - \frac{2}{65} a^{9} - \frac{2}{65} a^{8} - \frac{7}{52} a^{7} + \frac{1}{52} a^{6} - \frac{27}{65} a^{5} + \frac{123}{260} a^{4} + \frac{37}{260} a^{3} - \frac{9}{20} a^{2} + \frac{37}{260} a - \frac{37}{260}$, $\frac{1}{260} a^{13} - \frac{1}{260} a^{11} - \frac{1}{26} a^{10} - \frac{3}{130} a^{9} - \frac{7}{260} a^{8} - \frac{12}{65} a^{7} - \frac{3}{52} a^{6} + \frac{33}{260} a^{5} - \frac{9}{65} a^{4} - \frac{29}{130} a^{3} - \frac{1}{130} a^{2} + \frac{12}{65} a - \frac{111}{260}$, $\frac{1}{76700} a^{14} - \frac{53}{38350} a^{13} + \frac{28}{19175} a^{12} + \frac{2981}{76700} a^{11} + \frac{1213}{38350} a^{10} + \frac{427}{76700} a^{9} + \frac{909}{38350} a^{8} + \frac{1449}{2950} a^{7} - \frac{8332}{19175} a^{6} + \frac{6888}{19175} a^{5} + \frac{549}{76700} a^{4} - \frac{7899}{76700} a^{3} - \frac{2179}{5900} a^{2} + \frac{7526}{19175} a - \frac{209}{1300}$, $\frac{1}{7214768850997992700} a^{15} + \frac{2916169809879}{721476885099799270} a^{14} - \frac{195629257669837}{138745554826884475} a^{13} + \frac{6670388589503619}{3607384425498996350} a^{12} - \frac{22816414749169283}{7214768850997992700} a^{11} - \frac{355871743196534217}{7214768850997992700} a^{10} + \frac{8312609796680099}{721476885099799270} a^{9} - \frac{15955560367654727}{1803692212749498175} a^{8} - \frac{3006393507569108629}{7214768850997992700} a^{7} + \frac{1997253586012386309}{7214768850997992700} a^{6} - \frac{2830227485797339309}{7214768850997992700} a^{5} - \frac{98453608758279249}{360738442549899635} a^{4} - \frac{436011585511245189}{1803692212749498175} a^{3} - \frac{3592287032334633383}{7214768850997992700} a^{2} - \frac{208067003590201498}{1803692212749498175} a - \frac{2159951693996749}{122284217813525300}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 249792.59056 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |