Normalized defining polynomial
\( x^{16} - x^{15} - 3 x^{14} - 13 x^{13} + 22 x^{12} - 241 x^{11} + 482 x^{10} + 341 x^{9} + 2045 x^{8} - 7506 x^{7} + 18249 x^{6} - 36968 x^{5} + 67057 x^{4} - 111527 x^{3} + 162932 x^{2} - 243340 x + 279841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86380562306022715087890625=5^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(145=5\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{145}(128,·)$, $\chi_{145}(1,·)$, $\chi_{145}(133,·)$, $\chi_{145}(12,·)$, $\chi_{145}(144,·)$, $\chi_{145}(17,·)$, $\chi_{145}(86,·)$, $\chi_{145}(88,·)$, $\chi_{145}(28,·)$, $\chi_{145}(99,·)$, $\chi_{145}(104,·)$, $\chi_{145}(41,·)$, $\chi_{145}(46,·)$, $\chi_{145}(117,·)$, $\chi_{145}(57,·)$, $\chi_{145}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{14} a^{12} - \frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{2}{7} a^{9} - \frac{3}{14} a^{7} + \frac{2}{7} a^{5} + \frac{2}{7} a^{3} - \frac{1}{14} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{396363701062} a^{13} + \frac{438279409}{198181850531} a^{12} + \frac{35731383979}{396363701062} a^{11} - \frac{39237619271}{396363701062} a^{10} - \frac{60609546514}{198181850531} a^{9} - \frac{8286604875}{396363701062} a^{8} - \frac{11681947262}{198181850531} a^{7} - \frac{16753725117}{396363701062} a^{6} - \frac{106929068139}{396363701062} a^{5} + \frac{19543184544}{198181850531} a^{4} + \frac{46712992075}{396363701062} a^{3} + \frac{12605700122}{198181850531} a^{2} - \frac{145754097743}{396363701062} a + \frac{8412203111}{17233204394}$, $\frac{1}{9116365124426} a^{14} - \frac{1}{9116365124426} a^{13} - \frac{101919490879}{9116365124426} a^{12} - \frac{53998768067}{1302337874918} a^{11} + \frac{392834669991}{4558182562213} a^{10} + \frac{1825745387187}{9116365124426} a^{9} + \frac{377370510269}{9116365124426} a^{8} - \frac{2335227330085}{9116365124426} a^{7} + \frac{1669256904655}{9116365124426} a^{6} + \frac{1856961963567}{4558182562213} a^{5} + \frac{1250617314537}{9116365124426} a^{4} - \frac{339405086431}{9116365124426} a^{3} + \frac{452594238883}{1302337874918} a^{2} - \frac{81506971437}{396363701062} a + \frac{3489022350}{8616602197}$, $\frac{1}{209676397861798} a^{15} - \frac{1}{209676397861798} a^{14} - \frac{3}{209676397861798} a^{13} - \frac{597654008557}{104838198930899} a^{12} + \frac{28289540379}{104838198930899} a^{11} + \frac{8730130039055}{104838198930899} a^{10} + \frac{888511991601}{29953771123114} a^{9} - \frac{49700121475185}{209676397861798} a^{8} - \frac{4848507013559}{14976885561557} a^{7} + \frac{10689118027606}{104838198930899} a^{6} + \frac{29115994090655}{104838198930899} a^{5} + \frac{50499448843839}{209676397861798} a^{4} + \frac{11521544245487}{209676397861798} a^{3} + \frac{1402400403296}{4558182562213} a^{2} + \frac{29346685980}{198181850531} a - \frac{163382991}{17233204394}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{13147}{28311692933} a^{15} + \frac{39441}{28311692933} a^{14} + \frac{170911}{28311692933} a^{13} - \frac{289234}{28311692933} a^{12} - \frac{3138961}{56623385866} a^{11} - \frac{6336854}{28311692933} a^{10} - \frac{4483127}{28311692933} a^{9} - \frac{26885615}{28311692933} a^{8} + \frac{98681382}{28311692933} a^{7} + \frac{295959265}{56623385866} a^{6} + \frac{486018296}{28311692933} a^{5} - \frac{881598379}{28311692933} a^{4} + \frac{63749803}{1230943171} a^{3} - \frac{93133348}{1230943171} a^{2} + \frac{37214858433}{56623385866} a - \frac{159959549}{1230943171} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 805904.787678 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |