Normalized defining polynomial
\( x^{16} - 8 x^{15} + 835 x^{14} - 5496 x^{13} + 264016 x^{12} - 1360568 x^{11} + 39076255 x^{10} - 145621974 x^{9} + 2765414123 x^{8} - 6177080710 x^{7} + 95094647211 x^{6} - 48736060670 x^{5} + 1534675220624 x^{4} + 2123568115990 x^{3} + 12276401600505 x^{2} + 32381728258600 x + 37766617552225 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8597476448565520621040798398594140625=5^{8}\cdot 29^{8}\cdot 89^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} + \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{2} a^{5} + \frac{3}{10} a^{4} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{12} + \frac{1}{5} a^{9} - \frac{1}{2} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{3}{10} a^{2}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{1}{2} a^{7} + \frac{3}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2}$, $\frac{1}{85690} a^{14} + \frac{213}{85690} a^{13} - \frac{3307}{85690} a^{12} + \frac{7}{4510} a^{11} + \frac{3783}{85690} a^{10} - \frac{175}{1558} a^{9} - \frac{989}{4510} a^{8} - \frac{251}{2090} a^{7} + \frac{28161}{85690} a^{6} - \frac{28801}{85690} a^{5} + \frac{25697}{85690} a^{4} - \frac{2653}{85690} a^{3} + \frac{6291}{17138} a^{2} + \frac{3057}{17138} a - \frac{327}{902}$, $\frac{1}{32479709955377686250629838323167555869514294951617949769804703142404465778880753730418125450} a^{15} + \frac{35226152084336447568820643397657657378352773160715032814864708244100414189709172109559}{32479709955377686250629838323167555869514294951617949769804703142404465778880753730418125450} a^{14} - \frac{241294407184929426641181977857892817914108308458823527191579396740357393142708495591664206}{16239854977688843125314919161583777934757147475808974884902351571202232889440376865209062725} a^{13} - \frac{1096505570906714767422783013639716265018111722059033049356944612218699860927993721635851}{59595798083261809634183189583793680494521642113060458293219638793402689502533493083336010} a^{12} - \frac{18732075808925325186802180049946189021150813577804569252845635139190522911877444899151649}{32479709955377686250629838323167555869514294951617949769804703142404465778880753730418125450} a^{11} + \frac{1290239413466040454109320899482440169143491023719439180374966339747447335843818723581297739}{32479709955377686250629838323167555869514294951617949769804703142404465778880753730418125450} a^{10} - \frac{4623884744963458257403057928793492010728034690012390393992218015006682986173754864201155227}{32479709955377686250629838323167555869514294951617949769804703142404465778880753730418125450} a^{9} - \frac{3924533346018018537928605029955135017456090604001367661094579107323041613918277498099885839}{16239854977688843125314919161583777934757147475808974884902351571202232889440376865209062725} a^{8} + \frac{9615302331744999064120196814875136478941625415985772605372605325672933131604011039437354777}{32479709955377686250629838323167555869514294951617949769804703142404465778880753730418125450} a^{7} + \frac{9408411902699949355344933463175784973622127761502805822186430097112745263720532273798545749}{32479709955377686250629838323167555869514294951617949769804703142404465778880753730418125450} a^{6} - \frac{10107315330293602191699121505044707519646557070583485829468717344919979472130903155521541}{72017095244739880821795650383963538513335465524651773325509319606218327669358655721547950} a^{5} + \frac{245668300401667987059254807357068464119576275749904579472327477259543575459756987784001443}{792188047692138689039752154223598923646690120771169506580602515668401604362945212937027450} a^{4} - \frac{621027580940421466568890963645391572351609662354437349348672853800914337384357834574711894}{3247970995537768625062983832316755586951429495161794976980470314240446577888075373041812545} a^{3} + \frac{766683841105458202121304790734014860967683622373803833289184376896726506463067567170443277}{6495941991075537250125967664633511173902858990323589953960940628480893155776150746083625090} a^{2} - \frac{154331045315058722668414353628408292329908849196812526264852969813841799938930138449831919}{1299188398215107450025193532926702234780571798064717990792188125696178631155230149216725018} a - \frac{16185723022715712600924558591457663185811669928346499630848479703124902084787468146679950}{34189168374081775000662987708597427231067678896439947126110213834109963977769214453071711}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{6447606}$, which has order $51580848$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13998.0176198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times D_4).C_2^3$ (as 16T600):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $(C_2^2\times D_4).C_2^3$ |
| Character table for $(C_2^2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.4.2225.1, 4.4.725.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |