Normalized defining polynomial
\( x^{16} - 4 x^{15} + 661 x^{14} - 2924 x^{13} + 165956 x^{12} - 784824 x^{11} + 20443090 x^{10} - 97838278 x^{9} + 1345512595 x^{8} - 6041597096 x^{7} + 46617802187 x^{6} - 166583131684 x^{5} + 797569771891 x^{4} - 1958997450216 x^{3} + 5885733201608 x^{2} - 7615234442750 x + 12702224754731 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8597476448565520621040798398594140625=5^{8}\cdot 29^{8}\cdot 89^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2180} a^{14} + \frac{181}{1090} a^{13} - \frac{44}{545} a^{12} + \frac{171}{1090} a^{11} + \frac{241}{1090} a^{10} + \frac{35}{218} a^{9} + \frac{88}{545} a^{8} + \frac{66}{545} a^{7} - \frac{909}{2180} a^{6} + \frac{337}{1090} a^{5} + \frac{121}{1090} a^{4} - \frac{197}{545} a^{3} - \frac{5}{436} a^{2} + \frac{403}{1090} a + \frac{519}{2180}$, $\frac{1}{162099142619278434356160290488264458417060648134517733420103356727006657564097320222991080} a^{15} - \frac{22027876786166604767537845712223567092055860878330223733425740057200898094893321568347}{162099142619278434356160290488264458417060648134517733420103356727006657564097320222991080} a^{14} + \frac{2335722450621884421452849750890665515989919196354676940463857172751709021136602330497}{44313598310354957451109975529869999567266442901727100442893208509296516556614904380260} a^{13} + \frac{15373373753053615462379003476581899888428269004678193962746997009170230210631968056107733}{81049571309639217178080145244132229208530324067258866710051678363503328782048660111495540} a^{12} + \frac{19765988696384330767188219072684979020068086801564290619694548166978968949241158729091627}{81049571309639217178080145244132229208530324067258866710051678363503328782048660111495540} a^{11} + \frac{19674191578453760301708413060328276588268388584010455524897046903372148156713424030792221}{81049571309639217178080145244132229208530324067258866710051678363503328782048660111495540} a^{10} - \frac{4882261110954088136717385202028990411159442398255970240939087017853626143286425852306936}{20262392827409804294520036311033057302132581016814716677512919590875832195512165027873885} a^{9} - \frac{12222226981079059877939749420463494391053398979912582186545573636204342782903141298644947}{81049571309639217178080145244132229208530324067258866710051678363503328782048660111495540} a^{8} + \frac{5881423190519790016806964834035739973830031170213331964417169195286764153370821889476653}{32419828523855686871232058097652891683412129626903546684020671345401331512819464044598216} a^{7} + \frac{589027781681492908507415115604872540034107640482136464493303977383247331294784815023153}{32419828523855686871232058097652891683412129626903546684020671345401331512819464044598216} a^{6} - \frac{7792826490205122798133746760887516461932850676558694480405500958202065195866329540995943}{20262392827409804294520036311033057302132581016814716677512919590875832195512165027873885} a^{5} - \frac{11434125318799345784941383581317332295171108634736064057676825780772070222048571919291409}{40524785654819608589040072622066114604265162033629433355025839181751664391024330055747770} a^{4} - \frac{55780825200723417022933823414712267205585194131827819218674600395703068932150231624298093}{162099142619278434356160290488264458417060648134517733420103356727006657564097320222991080} a^{3} + \frac{20618033122702097783012978863974367950250875879454526147546066861752686184263094685984191}{162099142619278434356160290488264458417060648134517733420103356727006657564097320222991080} a^{2} - \frac{4576772196651120225161060864971092097512895641276244686077267103245638598286387097468133}{32419828523855686871232058097652891683412129626903546684020671345401331512819464044598216} a - \frac{978104256694053143192350266947062768572092627636842233029975347648340816093500466475391}{162099142619278434356160290488264458417060648134517733420103356727006657564097320222991080}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{5902584}$, which has order $47220672$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13998.0176198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times D_4).C_2^3$ (as 16T600):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $(C_2^2\times D_4).C_2^3$ |
| Character table for $(C_2^2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.4.2225.1, 4.4.725.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.3.3 | $x^{4} + 58$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |