Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} - x^{12} - 12 x^{11} - 42 x^{10} - 80 x^{9} + 681 x^{8} - 482 x^{7} - 1002 x^{6} + 1879 x^{5} - 386 x^{4} - 1089 x^{3} + 1089 x^{2} - 459 x + 81 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8584430743916259765625=5^{12}\cdot 181^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} - \frac{2}{9} a^{12} - \frac{4}{9} a^{11} - \frac{4}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{5} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{269726363277673430367} a^{15} + \frac{13915915847538234898}{269726363277673430367} a^{14} - \frac{2495614042297176479}{269726363277673430367} a^{13} + \frac{110255905028184057413}{269726363277673430367} a^{12} + \frac{79477842341864559332}{269726363277673430367} a^{11} + \frac{6724794822629731130}{29969595919741492263} a^{10} - \frac{22787619487736767871}{89908787759224476789} a^{9} + \frac{46593091858177824508}{269726363277673430367} a^{8} + \frac{35029254880222499743}{89908787759224476789} a^{7} + \frac{55421420389025110546}{269726363277673430367} a^{6} - \frac{14356721460944456144}{89908787759224476789} a^{5} + \frac{43988026241414130379}{269726363277673430367} a^{4} - \frac{78593514675971483153}{269726363277673430367} a^{3} - \frac{18731237467201940992}{89908787759224476789} a^{2} + \frac{5868787682149567028}{29969595919741492263} a - \frac{1740566838406173403}{9989865306580497421}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3433281994457538368}{269726363277673430367} a^{15} - \frac{5503829630558682961}{269726363277673430367} a^{14} - \frac{18731391854287311340}{269726363277673430367} a^{13} + \frac{60419009814054795973}{269726363277673430367} a^{12} + \frac{17663468919411794296}{269726363277673430367} a^{11} - \frac{8651463567167375684}{89908787759224476789} a^{10} - \frac{50706496390001297032}{89908787759224476789} a^{9} - \frac{324273628477408971217}{269726363277673430367} a^{8} + \frac{726863904665304290032}{89908787759224476789} a^{7} - \frac{852643893918418065052}{269726363277673430367} a^{6} - \frac{1153218169136850692249}{89908787759224476789} a^{5} + \frac{4957067474367841681604}{269726363277673430367} a^{4} + \frac{502252115630327093093}{269726363277673430367} a^{3} - \frac{118387237231008419325}{9989865306580497421} a^{2} + \frac{91294933617019402024}{9989865306580497421} a - \frac{17019425584767442571}{9989865306580497421} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43749.6863738 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.4525.1, 4.0.22625.1, 8.0.3706088125.1, 8.8.92652203125.1, 8.0.511890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.1.1 | $x^{2} - 181$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |