Normalized defining polynomial
\( x^{16} - 2 x^{15} - 5 x^{14} + 20 x^{13} - x^{12} - 12 x^{11} - 42 x^{10} - 80 x^{9} + 681 x^{8} + \cdots + 81 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(8584430743916259765625\)
\(\medspace = 5^{12}\cdot 181^{6}\)
|
| |
| Root discriminant: | \(23.49\) |
| |
| Galois root discriminant: | $5^{3/4}181^{1/2}\approx 44.98490324139099$ | ||
| Ramified primes: |
\(5\), \(181\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{128}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3}a^{13}+\frac{1}{3}a^{12}+\frac{1}{3}a^{11}-\frac{1}{3}a^{10}-\frac{1}{3}a^{9}+\frac{1}{3}a^{6}+\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{9}a^{14}+\frac{1}{9}a^{13}-\frac{2}{9}a^{12}-\frac{4}{9}a^{11}-\frac{4}{9}a^{10}+\frac{1}{3}a^{9}+\frac{1}{3}a^{8}+\frac{1}{9}a^{7}+\frac{4}{9}a^{5}-\frac{2}{9}a^{3}+\frac{4}{9}a^{2}+\frac{1}{3}a$, $\frac{1}{26\cdots 67}a^{15}+\frac{13\cdots 98}{26\cdots 67}a^{14}-\frac{24\cdots 79}{26\cdots 67}a^{13}+\frac{11\cdots 13}{26\cdots 67}a^{12}+\frac{79\cdots 32}{26\cdots 67}a^{11}+\frac{67\cdots 30}{29\cdots 63}a^{10}-\frac{22\cdots 71}{89\cdots 89}a^{9}+\frac{46\cdots 08}{26\cdots 67}a^{8}+\frac{35\cdots 43}{89\cdots 89}a^{7}+\frac{55\cdots 46}{26\cdots 67}a^{6}-\frac{14\cdots 44}{89\cdots 89}a^{5}+\frac{43\cdots 79}{26\cdots 67}a^{4}-\frac{78\cdots 53}{26\cdots 67}a^{3}-\frac{18\cdots 92}{89\cdots 89}a^{2}+\frac{58\cdots 28}{29\cdots 63}a-\frac{17\cdots 03}{99\cdots 21}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Relative class number: | $2$ (assuming GRH) |
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( \frac{3433281994457538368}{269726363277673430367} a^{15} - \frac{5503829630558682961}{269726363277673430367} a^{14} - \frac{18731391854287311340}{269726363277673430367} a^{13} + \frac{60419009814054795973}{269726363277673430367} a^{12} + \frac{17663468919411794296}{269726363277673430367} a^{11} - \frac{8651463567167375684}{89908787759224476789} a^{10} - \frac{50706496390001297032}{89908787759224476789} a^{9} - \frac{324273628477408971217}{269726363277673430367} a^{8} + \frac{726863904665304290032}{89908787759224476789} a^{7} - \frac{852643893918418065052}{269726363277673430367} a^{6} - \frac{1153218169136850692249}{89908787759224476789} a^{5} + \frac{4957067474367841681604}{269726363277673430367} a^{4} + \frac{502252115630327093093}{269726363277673430367} a^{3} - \frac{118387237231008419325}{9989865306580497421} a^{2} + \frac{91294933617019402024}{9989865306580497421} a - \frac{17019425584767442571}{9989865306580497421} \)
(order $10$)
|
| |
| Fundamental units: |
$\frac{19\cdots 75}{89\cdots 89}a^{15}-\frac{28\cdots 39}{89\cdots 89}a^{14}-\frac{11\cdots 54}{89\cdots 89}a^{13}+\frac{32\cdots 67}{89\cdots 89}a^{12}+\frac{14\cdots 90}{89\cdots 89}a^{11}-\frac{46\cdots 20}{29\cdots 63}a^{10}-\frac{92\cdots 54}{99\cdots 21}a^{9}-\frac{20\cdots 38}{89\cdots 89}a^{8}+\frac{39\cdots 57}{29\cdots 63}a^{7}-\frac{30\cdots 14}{89\cdots 89}a^{6}-\frac{67\cdots 76}{29\cdots 63}a^{5}+\frac{26\cdots 31}{89\cdots 89}a^{4}+\frac{44\cdots 63}{89\cdots 89}a^{3}-\frac{20\cdots 41}{99\cdots 21}a^{2}+\frac{45\cdots 46}{29\cdots 63}a-\frac{28\cdots 09}{99\cdots 21}$, $\frac{13\cdots 53}{89\cdots 89}a^{15}-\frac{19\cdots 05}{89\cdots 89}a^{14}-\frac{75\cdots 15}{89\cdots 89}a^{13}+\frac{22\cdots 39}{89\cdots 89}a^{12}+\frac{10\cdots 56}{89\cdots 89}a^{11}-\frac{11\cdots 18}{99\cdots 21}a^{10}-\frac{66\cdots 26}{99\cdots 21}a^{9}-\frac{13\cdots 96}{89\cdots 89}a^{8}+\frac{90\cdots 20}{99\cdots 21}a^{7}-\frac{18\cdots 06}{89\cdots 89}a^{6}-\frac{15\cdots 03}{99\cdots 21}a^{5}+\frac{17\cdots 51}{89\cdots 89}a^{4}+\frac{40\cdots 14}{89\cdots 89}a^{3}-\frac{40\cdots 34}{29\cdots 63}a^{2}+\frac{26\cdots 35}{29\cdots 63}a-\frac{21\cdots 99}{99\cdots 21}$, $\frac{20\cdots 99}{89\cdots 89}a^{15}+\frac{26\cdots 86}{29\cdots 63}a^{14}-\frac{18\cdots 21}{99\cdots 21}a^{13}+\frac{14\cdots 21}{89\cdots 89}a^{12}+\frac{23\cdots 56}{29\cdots 63}a^{11}+\frac{99\cdots 94}{89\cdots 89}a^{10}-\frac{76\cdots 84}{99\cdots 21}a^{9}-\frac{39\cdots 14}{89\cdots 89}a^{8}+\frac{87\cdots 89}{89\cdots 89}a^{7}+\frac{18\cdots 50}{89\cdots 89}a^{6}-\frac{27\cdots 94}{89\cdots 89}a^{5}+\frac{26\cdots 86}{89\cdots 89}a^{4}+\frac{42\cdots 38}{99\cdots 21}a^{3}-\frac{15\cdots 59}{89\cdots 89}a^{2}+\frac{20\cdots 77}{29\cdots 63}a+\frac{49\cdots 56}{99\cdots 21}$, $\frac{41\cdots 41}{89\cdots 89}a^{15}-\frac{86\cdots 68}{89\cdots 89}a^{14}-\frac{21\cdots 53}{89\cdots 89}a^{13}+\frac{96\cdots 72}{99\cdots 21}a^{12}-\frac{42\cdots 24}{89\cdots 89}a^{11}-\frac{74\cdots 35}{89\cdots 89}a^{10}-\frac{20\cdots 35}{99\cdots 21}a^{9}-\frac{29\cdots 71}{89\cdots 89}a^{8}+\frac{29\cdots 15}{89\cdots 89}a^{7}-\frac{21\cdots 38}{89\cdots 89}a^{6}-\frac{48\cdots 41}{89\cdots 89}a^{5}+\frac{83\cdots 09}{89\cdots 89}a^{4}-\frac{66\cdots 26}{89\cdots 89}a^{3}-\frac{61\cdots 11}{89\cdots 89}a^{2}+\frac{47\cdots 61}{99\cdots 21}a-\frac{98\cdots 78}{99\cdots 21}$, $\frac{27\cdots 51}{89\cdots 89}a^{15}-\frac{48\cdots 45}{89\cdots 89}a^{14}-\frac{15\cdots 71}{89\cdots 89}a^{13}+\frac{52\cdots 88}{89\cdots 89}a^{12}+\frac{13\cdots 41}{89\cdots 89}a^{11}-\frac{47\cdots 34}{99\cdots 21}a^{10}-\frac{40\cdots 65}{29\cdots 63}a^{9}-\frac{25\cdots 04}{89\cdots 89}a^{8}+\frac{61\cdots 15}{29\cdots 63}a^{7}-\frac{81\cdots 05}{89\cdots 89}a^{6}-\frac{11\cdots 96}{29\cdots 63}a^{5}+\frac{47\cdots 44}{89\cdots 89}a^{4}+\frac{41\cdots 36}{89\cdots 89}a^{3}-\frac{12\cdots 84}{29\cdots 63}a^{2}+\frac{74\cdots 61}{29\cdots 63}a-\frac{59\cdots 16}{99\cdots 21}$, $\frac{13\cdots 56}{26\cdots 67}a^{15}-\frac{34\cdots 74}{26\cdots 67}a^{14}-\frac{50\cdots 53}{26\cdots 67}a^{13}+\frac{29\cdots 85}{26\cdots 67}a^{12}-\frac{13\cdots 92}{26\cdots 67}a^{11}-\frac{46\cdots 98}{89\cdots 89}a^{10}-\frac{22\cdots 90}{89\cdots 89}a^{9}-\frac{42\cdots 57}{26\cdots 67}a^{8}+\frac{32\cdots 74}{89\cdots 89}a^{7}-\frac{10\cdots 74}{26\cdots 67}a^{6}-\frac{32\cdots 93}{89\cdots 89}a^{5}+\frac{26\cdots 26}{26\cdots 67}a^{4}-\frac{49\cdots 18}{26\cdots 67}a^{3}-\frac{37\cdots 80}{99\cdots 21}a^{2}+\frac{11\cdots 23}{29\cdots 63}a-\frac{72\cdots 85}{99\cdots 21}$, $\frac{87\cdots 15}{89\cdots 89}a^{15}-\frac{10\cdots 63}{89\cdots 89}a^{14}-\frac{53\cdots 09}{89\cdots 89}a^{13}+\frac{44\cdots 86}{29\cdots 63}a^{12}+\frac{10\cdots 86}{89\cdots 89}a^{11}-\frac{42\cdots 80}{89\cdots 89}a^{10}-\frac{14\cdots 65}{29\cdots 63}a^{9}-\frac{10\cdots 34}{89\cdots 89}a^{8}+\frac{52\cdots 94}{89\cdots 89}a^{7}+\frac{45\cdots 15}{89\cdots 89}a^{6}-\frac{94\cdots 94}{89\cdots 89}a^{5}+\frac{87\cdots 15}{89\cdots 89}a^{4}+\frac{49\cdots 67}{89\cdots 89}a^{3}-\frac{66\cdots 68}{89\cdots 89}a^{2}+\frac{10\cdots 02}{29\cdots 63}a-\frac{60\cdots 94}{99\cdots 21}$
|
| |
| Regulator: | \( 43749.6863738 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 43749.6863738 \cdot 2}{10\cdot\sqrt{8584430743916259765625}}\cr\approx \mathstrut & 0.229397212322 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_4:C_4$ |
| Character table for $D_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.4525.1, 4.0.22625.1, 8.0.3706088125.1, 8.8.92652203125.1, 8.0.511890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 32 |
| Degree 16 sibling: | deg 16 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(181\)
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{181}$ | $x + 179$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 181.1.2.1a1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 181.1.2.1a1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 181.1.2.1a1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 181.1.2.1a1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 181.1.2.1a1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 181.1.2.1a1.1 | $x^{2} + 181$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |