Properties

Label 16.0.85830270230...6489.7
Degree $16$
Signature $[0, 8]$
Discriminant $13^{10}\cdot 53^{8}$
Root discriminant $36.17$
Ramified primes $13, 53$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2^2.SD_{16}$ (as 16T163)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5463, -20616, 47477, -70111, 81644, -72839, 56302, -35624, 20478, -9966, 4521, -1748, 625, -182, 46, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 46*x^14 - 182*x^13 + 625*x^12 - 1748*x^11 + 4521*x^10 - 9966*x^9 + 20478*x^8 - 35624*x^7 + 56302*x^6 - 72839*x^5 + 81644*x^4 - 70111*x^3 + 47477*x^2 - 20616*x + 5463)
 
gp: K = bnfinit(x^16 - 8*x^15 + 46*x^14 - 182*x^13 + 625*x^12 - 1748*x^11 + 4521*x^10 - 9966*x^9 + 20478*x^8 - 35624*x^7 + 56302*x^6 - 72839*x^5 + 81644*x^4 - 70111*x^3 + 47477*x^2 - 20616*x + 5463, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 46 x^{14} - 182 x^{13} + 625 x^{12} - 1748 x^{11} + 4521 x^{10} - 9966 x^{9} + 20478 x^{8} - 35624 x^{7} + 56302 x^{6} - 72839 x^{5} + 81644 x^{4} - 70111 x^{3} + 47477 x^{2} - 20616 x + 5463 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8583027023095873875496489=13^{10}\cdot 53^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $36.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $13, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9151533} a^{14} - \frac{7}{9151533} a^{13} + \frac{3709}{1016837} a^{12} - \frac{200195}{9151533} a^{11} + \frac{154099}{1016837} a^{10} + \frac{1001521}{9151533} a^{9} - \frac{987322}{9151533} a^{8} - \frac{1211186}{9151533} a^{7} + \frac{633880}{9151533} a^{6} - \frac{100738}{9151533} a^{5} - \frac{4241869}{9151533} a^{4} - \frac{1502831}{3050511} a^{3} - \frac{2931043}{9151533} a^{2} + \frac{219294}{1016837} a + \frac{37664}{1016837}$, $\frac{1}{98076979161} a^{15} + \frac{5351}{98076979161} a^{14} + \frac{4091747963}{98076979161} a^{13} - \frac{4622849111}{98076979161} a^{12} - \frac{4123802593}{98076979161} a^{11} + \frac{11646752864}{98076979161} a^{10} - \frac{2370933700}{98076979161} a^{9} - \frac{15928414319}{98076979161} a^{8} + \frac{2329071521}{14010997023} a^{7} - \frac{8741754967}{98076979161} a^{6} - \frac{412824100}{98076979161} a^{5} - \frac{19750059674}{98076979161} a^{4} + \frac{33267449875}{98076979161} a^{3} + \frac{615011426}{10897442129} a^{2} + \frac{3864548781}{10897442129} a - \frac{2557891906}{10897442129}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 960669.075612 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.SD_{16}$ (as 16T163):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 19 conjugacy class representatives for $C_2^2.SD_{16}$
Character table for $C_2^2.SD_{16}$

Intermediate fields

\(\Q(\sqrt{53}) \), 4.4.36517.1, 8.4.2929680361933.2, 8.0.17335386757.1, 8.4.225360027841.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$53$53.4.2.1$x^{4} + 477 x^{2} + 70225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53.4.2.1$x^{4} + 477 x^{2} + 70225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53.4.2.1$x^{4} + 477 x^{2} + 70225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
53.4.2.1$x^{4} + 477 x^{2} + 70225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$