Normalized defining polynomial
\( x^{16} - 18 x^{14} - 423 x^{12} + 6198 x^{10} + 94248 x^{8} + 96918 x^{6} + 15438237 x^{4} + 77996022 x^{2} + 1188939361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(857597344729811353117661593600000000=2^{24}\cdot 5^{8}\cdot 29^{4}\cdot 41^{6}\cdot 79^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $176.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 41, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{116} a^{10} - \frac{1}{4} a^{9} - \frac{9}{58} a^{8} - \frac{1}{4} a^{7} - \frac{17}{116} a^{6} - \frac{1}{2} a^{5} - \frac{37}{116} a^{4} - \frac{1}{4} a^{3} + \frac{14}{29} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{116} a^{11} + \frac{11}{116} a^{9} - \frac{1}{4} a^{8} + \frac{3}{29} a^{7} - \frac{1}{4} a^{6} + \frac{21}{116} a^{5} - \frac{1}{2} a^{4} - \frac{31}{116} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{3364} a^{12} + \frac{11}{3364} a^{10} - \frac{1}{4} a^{9} - \frac{26}{841} a^{8} - \frac{1}{4} a^{7} + \frac{659}{3364} a^{6} - \frac{1}{2} a^{5} + \frac{665}{3364} a^{4} - \frac{1}{4} a^{3} + \frac{17}{58} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{6728} a^{13} - \frac{1}{6728} a^{12} - \frac{9}{3364} a^{11} + \frac{9}{3364} a^{10} + \frac{209}{3364} a^{9} - \frac{209}{3364} a^{8} + \frac{144}{841} a^{7} - \frac{144}{841} a^{6} - \frac{813}{3364} a^{5} + \frac{813}{3364} a^{4} + \frac{47}{116} a^{3} - \frac{47}{116} a^{2} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{6152003184884249300405608} a^{14} - \frac{1278564360866873}{49609328233307657512} a^{12} + \frac{5965099290568472355139}{1538000796221062325101402} a^{10} - \frac{359228531486401355776011}{3076001592442124650202804} a^{8} - \frac{334323026222751089818999}{3076001592442124650202804} a^{6} + \frac{5795415875869054288079}{26517255107259695260369} a^{4} + \frac{3264310818979760884429}{7315104857175088347688} a^{2} + \frac{2580304312257909903}{6152316953048854792}$, $\frac{1}{12304006369768498600811216} a^{15} - \frac{1}{12304006369768498600811216} a^{14} - \frac{1278564360866873}{99218656466615315024} a^{13} + \frac{1278564360866873}{99218656466615315024} a^{12} + \frac{5965099290568472355139}{3076001592442124650202804} a^{11} - \frac{5965099290568472355139}{3076001592442124650202804} a^{10} - \frac{359228531486401355776011}{6152003184884249300405608} a^{9} + \frac{359228531486401355776011}{6152003184884249300405608} a^{8} - \frac{334323026222751089818999}{6152003184884249300405608} a^{7} + \frac{334323026222751089818999}{6152003184884249300405608} a^{6} - \frac{10360919615695320486145}{26517255107259695260369} a^{5} + \frac{10360919615695320486145}{26517255107259695260369} a^{4} + \frac{3264310818979760884429}{14630209714350176695376} a^{3} - \frac{3264310818979760884429}{14630209714350176695376} a^{2} - \frac{3572012640790944889}{12304633906097709584} a + \frac{3572012640790944889}{12304633906097709584}$
Class group and class number
$C_{2}\times C_{2}\times C_{16}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2761514657.38 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 53 conjugacy class representatives for t16n839 are not computed |
| Character table for t16n839 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.31600.1, 4.0.1025.1, 4.0.1295600.1, 8.0.1678579360000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.21 | $x^{8} + 12 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
| 2.8.12.21 | $x^{8} + 12 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.8.4.1 | $x^{8} + 37446 x^{4} - 493039 x^{2} + 350550729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |