Normalized defining polynomial
\( x^{16} - 4 x^{15} + 378 x^{14} - 1308 x^{13} + 46253 x^{12} - 135296 x^{11} + 2675448 x^{10} - 5940208 x^{9} + 81603792 x^{8} - 118159648 x^{7} + 1413343656 x^{6} - 1007025840 x^{5} + 13706396484 x^{4} - 1069756000 x^{3} + 72875921600 x^{2} + 17326720000 x + 150100780000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(85304566600455667746642216756445184=2^{44}\cdot 449^{2}\cdot 1889^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} - \frac{1}{16} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{80} a^{13} + \frac{1}{80} a^{12} - \frac{1}{40} a^{11} + \frac{1}{40} a^{10} + \frac{3}{80} a^{9} + \frac{19}{80} a^{8} + \frac{1}{10} a^{7} + \frac{3}{20} a^{6} + \frac{1}{40} a^{5} + \frac{1}{40} a^{4} + \frac{1}{5} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a$, $\frac{1}{800} a^{14} - \frac{1}{200} a^{13} - \frac{11}{400} a^{12} - \frac{1}{100} a^{11} + \frac{3}{800} a^{10} - \frac{3}{25} a^{9} - \frac{13}{200} a^{8} - \frac{27}{200} a^{7} - \frac{79}{400} a^{6} + \frac{11}{25} a^{5} + \frac{7}{100} a^{4} + \frac{9}{20} a^{3} + \frac{12}{25} a^{2}$, $\frac{1}{8889922282892208073589386034871509400775031182627617819875954708971484000} a^{15} + \frac{1550644920727862378316891284430499225198759527054717533536890735316643}{4444961141446104036794693017435754700387515591313808909937977354485742000} a^{14} - \frac{19646081388633819175924700048762327895760188494969000856151771975394391}{4444961141446104036794693017435754700387515591313808909937977354485742000} a^{13} + \frac{129533541545170318876650589952027911714857538974204498364675583108749031}{4444961141446104036794693017435754700387515591313808909937977354485742000} a^{12} + \frac{276421942836212073214911988273030176461629710289820594798292942674654683}{8889922282892208073589386034871509400775031182627617819875954708971484000} a^{11} - \frac{182946402874532954642791832673037152779145428148714639446339601266270963}{4444961141446104036794693017435754700387515591313808909937977354485742000} a^{10} + \frac{251784812375035927232143349653257398829498671808415209894544084647302027}{2222480570723052018397346508717877350193757795656904454968988677242871000} a^{9} + \frac{657956307135081007463799799307295791148401535405421396259645777786209981}{4444961141446104036794693017435754700387515591313808909937977354485742000} a^{8} + \frac{189526813893851418261634526078007250997111098600133017488186821795692361}{4444961141446104036794693017435754700387515591313808909937977354485742000} a^{7} + \frac{21090628657023902810963331364053882903391602683249837581647249806288883}{2222480570723052018397346508717877350193757795656904454968988677242871000} a^{6} + \frac{189458245889133612496194472117755142261988994405302477863815902511132467}{1111240285361526009198673254358938675096878897828452227484494338621435500} a^{5} + \frac{12930138002690311313544217722539889436528184604187139434118654920777579}{88899222828922080735893860348715094007750311826276178198759547089714840} a^{4} + \frac{75726506086227834386900897588437029983958838839914444727686004243028762}{277810071340381502299668313589734668774219724457113056871123584655358875} a^{3} + \frac{16964882488112927653863328997212260821851780199695974695144560237125567}{111124028536152600919867325435893867509687889782845222748449433862143550} a^{2} + \frac{3012101358493856267686253466130510595594283346179537811742911580039392}{11112402853615260091986732543589386750968788978284522274844943386214355} a + \frac{18749052701414381095844643234352511142228441636334356229295254393342}{2222480570723052018397346508717877350193757795656904454968988677242871}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{672664}$, which has order $10762624$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56271.9156358 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 46 conjugacy class representatives for t16n1186 |
| Character table for t16n1186 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||