Normalized defining polynomial
\( x^{16} - 4 x^{15} + 298 x^{14} - 572 x^{13} + 34241 x^{12} - 39808 x^{11} + 1970244 x^{10} - 1978792 x^{9} + 62512596 x^{8} - 60883952 x^{7} + 1132616672 x^{6} - 906010208 x^{5} + 11255370396 x^{4} - 6154880192 x^{3} + 56568573472 x^{2} - 15531166208 x + 112207690208 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(85304566600455667746642216756445184=2^{44}\cdot 449^{2}\cdot 1889^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 449, 1889$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{248} a^{14} + \frac{7}{124} a^{13} - \frac{1}{62} a^{12} - \frac{15}{124} a^{11} + \frac{19}{248} a^{10} - \frac{15}{124} a^{9} - \frac{11}{124} a^{8} + \frac{21}{124} a^{7} - \frac{17}{124} a^{6} - \frac{3}{31} a^{5} + \frac{13}{31} a^{4} - \frac{19}{62} a^{3} - \frac{9}{31} a^{2} + \frac{8}{31} a + \frac{2}{31}$, $\frac{1}{9869703778122425138798847401542386355014713225431135520250013241744} a^{15} + \frac{43528179220209587640216033654169029762403989642428167760294223}{31233239804184889679743187979564513781692130460225112405854472284} a^{14} + \frac{25686634893920810661341123632182377631518568797983689725850850843}{2467425944530606284699711850385596588753678306357783880062503310436} a^{13} - \frac{75651395133669723356003460056816392079540062077921101872936835495}{1233712972265303142349855925192798294376839153178891940031251655218} a^{12} + \frac{134704330008889332027589655494429162725444345264490132122696071325}{9869703778122425138798847401542386355014713225431135520250013241744} a^{11} + \frac{289916081494871257043437042723772050819114100163265692271158573531}{2467425944530606284699711850385596588753678306357783880062503310436} a^{10} + \frac{327087447169785916125822097944880910835547446204528230221739393063}{4934851889061212569399423700771193177507356612715567760125006620872} a^{9} + \frac{28144036488033282006889053276247801328502662521287739470753557287}{1233712972265303142349855925192798294376839153178891940031251655218} a^{8} + \frac{24067236099909110354690941446963548648684773828906715182291519852}{616856486132651571174927962596399147188419576589445970015625827609} a^{7} - \frac{82568262901801105185301292630241771664898243285999757404508574780}{616856486132651571174927962596399147188419576589445970015625827609} a^{6} + \frac{43905436938626345685603228506037397945687499223215948526258523617}{2467425944530606284699711850385596588753678306357783880062503310436} a^{5} + \frac{376795848892699719426310142793803946993941281971909338476044399287}{1233712972265303142349855925192798294376839153178891940031251655218} a^{4} - \frac{143737529667550298364351433421890075507793871759869476561007484955}{2467425944530606284699711850385596588753678306357783880062503310436} a^{3} + \frac{145036166125313574477320831299414833200448129907340724777374632904}{616856486132651571174927962596399147188419576589445970015625827609} a^{2} + \frac{229889515567109012222118172528492527662759520995426705258454456794}{616856486132651571174927962596399147188419576589445970015625827609} a - \frac{221742704326477365164308510508429554423798430584829796493878487665}{616856486132651571174927962596399147188419576589445970015625827609}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{772144}$, which has order $12354304$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56271.9156358 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 46 conjugacy class representatives for t16n1186 |
| Character table for t16n1186 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.7923040256.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 449 | Data not computed | ||||||
| 1889 | Data not computed | ||||||