Properties

Label 16.0.85010002742...0144.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{28}\cdot 3^{8}\cdot 13^{6}$
Root discriminant $15.24$
Ramified primes $2, 3, 13$
Class number $2$
Class group $[2]$
Galois group $C_2\wr C_2^2$ (as 16T128)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -6, -6, 34, -72, 52, 70, -69, -84, 100, -42, 24, -2, 2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 2*x^14 - 2*x^13 + 24*x^12 - 42*x^11 + 100*x^10 - 84*x^9 - 69*x^8 + 70*x^7 + 52*x^6 - 72*x^5 + 34*x^4 - 6*x^3 - 6*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^16 - 4*x^15 + 2*x^14 - 2*x^13 + 24*x^12 - 42*x^11 + 100*x^10 - 84*x^9 - 69*x^8 + 70*x^7 + 52*x^6 - 72*x^5 + 34*x^4 - 6*x^3 - 6*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 2 x^{14} - 2 x^{13} + 24 x^{12} - 42 x^{11} + 100 x^{10} - 84 x^{9} - 69 x^{8} + 70 x^{7} + 52 x^{6} - 72 x^{5} + 34 x^{4} - 6 x^{3} - 6 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8501000274280710144=2^{28}\cdot 3^{8}\cdot 13^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $15.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{6}{13} a^{13} - \frac{2}{13} a^{12} - \frac{3}{13} a^{11} + \frac{5}{13} a^{10} + \frac{5}{13} a^{9} - \frac{1}{13} a^{8} + \frac{2}{13} a^{7} + \frac{2}{13} a^{6} + \frac{1}{13} a^{5} - \frac{1}{13} a^{4} - \frac{3}{13} a^{3} + \frac{3}{13} a^{2} - \frac{5}{13} a - \frac{1}{13}$, $\frac{1}{311056910515} a^{15} - \frac{4995283162}{311056910515} a^{14} + \frac{64139433443}{311056910515} a^{13} - \frac{147778866501}{311056910515} a^{12} + \frac{32268229247}{311056910515} a^{11} - \frac{92189642188}{311056910515} a^{10} + \frac{4249780608}{23927454655} a^{9} + \frac{116846053214}{311056910515} a^{8} + \frac{134279580154}{311056910515} a^{7} + \frac{116738997418}{311056910515} a^{6} + \frac{131536707803}{311056910515} a^{5} - \frac{42196600756}{311056910515} a^{4} + \frac{40237360142}{311056910515} a^{3} + \frac{101260159318}{311056910515} a^{2} + \frac{16118615705}{62211382103} a - \frac{12289594598}{311056910515}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{48905593307}{23927454655} a^{15} - \frac{148505765999}{23927454655} a^{14} - \frac{48923541054}{23927454655} a^{13} - \frac{131750350742}{23927454655} a^{12} + \frac{1043316217809}{23927454655} a^{11} - \frac{1037841002606}{23927454655} a^{10} + \frac{3805115045083}{23927454655} a^{9} - \frac{316684030457}{23927454655} a^{8} - \frac{4028243866857}{23927454655} a^{7} - \frac{237048484674}{23927454655} a^{6} + \frac{2509787983301}{23927454655} a^{5} - \frac{1182343977812}{23927454655} a^{4} + \frac{335015466224}{23927454655} a^{3} + \frac{182362160791}{23927454655} a^{2} - \frac{40724136003}{4785490931} a - \frac{3661472287}{1840573435} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2145.36050468 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_2^2$ (as 16T128):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $C_2\wr C_2^2$
Character table for $C_2\wr C_2^2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), 4.0.7488.4, 4.0.832.1, \(\Q(\zeta_{12})\), 8.0.728911872.3, 8.0.56070144.5, 8.0.4313088.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$