Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} + 135 x^{12} - 264 x^{11} + 436 x^{10} - 475 x^{9} + 556 x^{8} - 1134 x^{7} + 1598 x^{6} - 1099 x^{5} + 352 x^{4} - 102 x^{3} - 5129 x^{2} + 5173 x + 7039 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(844148415947491674530641=13^{6}\cdot 53^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{47} a^{10} - \frac{5}{47} a^{9} - \frac{17}{47} a^{7} + \frac{15}{47} a^{5} - \frac{1}{47} a^{4} + \frac{22}{47} a^{3} - \frac{14}{47} a^{2} - \frac{1}{47} a + \frac{15}{47}$, $\frac{1}{47} a^{11} + \frac{22}{47} a^{9} - \frac{17}{47} a^{8} + \frac{9}{47} a^{7} + \frac{15}{47} a^{6} - \frac{20}{47} a^{5} + \frac{17}{47} a^{4} + \frac{2}{47} a^{3} + \frac{23}{47} a^{2} + \frac{10}{47} a - \frac{19}{47}$, $\frac{1}{2491} a^{12} - \frac{6}{2491} a^{11} - \frac{10}{2491} a^{10} + \frac{105}{2491} a^{9} - \frac{77}{2491} a^{8} - \frac{388}{2491} a^{7} - \frac{1238}{2491} a^{6} + \frac{597}{2491} a^{5} + \frac{261}{2491} a^{4} - \frac{552}{2491} a^{3} + \frac{273}{2491} a^{2} + \frac{22}{53} a - \frac{319}{2491}$, $\frac{1}{7473} a^{13} + \frac{1}{7473} a^{12} + \frac{18}{2491} a^{11} - \frac{71}{7473} a^{10} - \frac{1462}{7473} a^{9} + \frac{751}{2491} a^{8} + \frac{431}{2491} a^{7} - \frac{499}{2491} a^{6} + \frac{730}{7473} a^{5} + \frac{1061}{2491} a^{4} - \frac{3220}{7473} a^{3} + \frac{1885}{7473} a^{2} + \frac{3103}{7473} a + \frac{1636}{7473}$, $\frac{1}{72704817} a^{14} - \frac{7}{72704817} a^{13} + \frac{13858}{72704817} a^{12} - \frac{83057}{72704817} a^{11} - \frac{48571}{8078313} a^{10} + \frac{2946884}{72704817} a^{9} - \frac{3094883}{8078313} a^{8} + \frac{6705442}{24234939} a^{7} + \frac{27345205}{72704817} a^{6} - \frac{30095291}{72704817} a^{5} - \frac{15198790}{72704817} a^{4} - \frac{1264690}{8078313} a^{3} - \frac{15525457}{72704817} a^{2} - \frac{22551193}{72704817} a + \frac{24925765}{72704817}$, $\frac{1}{10687608099} a^{15} + \frac{22}{3562536033} a^{14} - \frac{7664}{169644573} a^{13} + \frac{286928}{1526801157} a^{12} - \frac{106173905}{10687608099} a^{11} + \frac{7519487}{10687608099} a^{10} - \frac{5528167}{1526801157} a^{9} - \frac{1330632032}{3562536033} a^{8} + \frac{410357176}{1526801157} a^{7} + \frac{76196174}{1526801157} a^{6} - \frac{1611846989}{3562536033} a^{5} - \frac{2293510792}{10687608099} a^{4} - \frac{4669748665}{10687608099} a^{3} + \frac{5293979641}{10687608099} a^{2} - \frac{242807540}{3562536033} a - \frac{2033424212}{10687608099}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 449119.359225 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.D_4$ (as 16T339):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $C_2^4.D_4$ |
| Character table for $C_2^4.D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.4.36517.1, 8.0.17335386757.1, 8.4.70675038317.1, 8.4.918775498121.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53 | Data not computed | ||||||