Normalized defining polynomial
\( x^{16} - 2 x^{15} + 14 x^{13} + 13 x^{12} + 56 x^{11} + 159 x^{10} + 340 x^{9} + 982 x^{8} + 3130 x^{7} + 7837 x^{6} + 13910 x^{5} + 18208 x^{4} + 17400 x^{3} + 12032 x^{2} + 5600 x + 1472 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(843842771347424502531361=11^{8}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{8} a^{7} + \frac{1}{16} a^{5} - \frac{1}{8} a^{4} - \frac{7}{16} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{96} a^{12} + \frac{1}{48} a^{11} + \frac{5}{96} a^{10} - \frac{1}{24} a^{9} + \frac{1}{16} a^{8} + \frac{1}{8} a^{7} - \frac{11}{96} a^{6} + \frac{1}{24} a^{5} + \frac{23}{96} a^{4} - \frac{19}{48} a^{3} - \frac{1}{12} a^{2} + \frac{1}{4} a + \frac{1}{6}$, $\frac{1}{192} a^{13} - \frac{1}{192} a^{12} + \frac{5}{192} a^{11} - \frac{7}{192} a^{10} - \frac{1}{32} a^{8} - \frac{35}{192} a^{7} - \frac{35}{192} a^{6} + \frac{41}{192} a^{5} + \frac{13}{192} a^{4} - \frac{23}{48} a^{3} - \frac{1}{16} a^{2} - \frac{5}{12} a - \frac{1}{4}$, $\frac{1}{21120} a^{14} - \frac{7}{10560} a^{13} - \frac{1}{192} a^{12} + \frac{7}{2640} a^{11} - \frac{183}{7040} a^{10} - \frac{227}{10560} a^{9} - \frac{2261}{21120} a^{8} - \frac{173}{1760} a^{7} - \frac{223}{1320} a^{6} - \frac{159}{880} a^{5} - \frac{2437}{21120} a^{4} + \frac{13}{55} a^{3} + \frac{511}{1056} a^{2} + \frac{217}{660} a - \frac{281}{1320}$, $\frac{1}{231286851840} a^{15} + \frac{491273}{115643425920} a^{14} - \frac{24111}{60230951} a^{13} - \frac{26517049}{38547808640} a^{12} + \frac{6201793441}{231286851840} a^{11} + \frac{44398059}{9636952160} a^{10} - \frac{8923950821}{231286851840} a^{9} + \frac{17784683}{4818476080} a^{8} - \frac{21093927709}{115643425920} a^{7} + \frac{27991128487}{115643425920} a^{6} + \frac{16676245491}{77095617280} a^{5} - \frac{2309224279}{10513038720} a^{4} + \frac{5190918305}{11564342592} a^{3} + \frac{10610795023}{28910856480} a^{2} + \frac{842449163}{4818476080} a - \frac{3550665}{20949896}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1861090.21257 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.10769.1, 8.0.10321451129.1, 8.0.10321451129.2, 8.0.918609150481.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.8.6.1 | $x^{8} - 4361 x^{4} + 10265616$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |