Normalized defining polynomial
\( x^{16} - 6 x^{15} + 109 x^{14} - 66 x^{13} + 1631 x^{12} + 18622 x^{11} + 23901 x^{10} + 278072 x^{9} + 1930997 x^{8} + 4400188 x^{7} + 16657011 x^{6} + 91551908 x^{5} + 279233036 x^{4} + 585873856 x^{3} + 836081984 x^{2} + 529353216 x + 157623296 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8422523572126121633218804931640625=5^{14}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{8} a^{8} + \frac{1}{12} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{24} a^{4} - \frac{11}{24} a^{3} + \frac{7}{24} a^{2} + \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{48} a^{11} - \frac{1}{48} a^{10} - \frac{1}{16} a^{9} + \frac{1}{24} a^{8} - \frac{1}{24} a^{7} - \frac{1}{24} a^{6} + \frac{5}{48} a^{5} - \frac{5}{48} a^{4} - \frac{23}{48} a^{3} + \frac{1}{4} a^{2} - \frac{1}{12} a$, $\frac{1}{48} a^{12} + \frac{1}{48} a^{9} - \frac{1}{24} a^{7} + \frac{1}{48} a^{6} - \frac{1}{24} a^{5} - \frac{1}{24} a^{4} - \frac{7}{48} a^{3} - \frac{3}{8} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{192} a^{13} + \frac{1}{192} a^{11} + \frac{1}{64} a^{9} + \frac{5}{192} a^{7} - \frac{5}{96} a^{6} + \frac{7}{64} a^{5} + \frac{5}{32} a^{4} + \frac{19}{192} a^{3} + \frac{43}{96} a^{2} + \frac{5}{24} a - \frac{1}{2}$, $\frac{1}{57216} a^{14} - \frac{17}{9536} a^{13} - \frac{113}{19072} a^{12} + \frac{97}{9536} a^{11} + \frac{847}{57216} a^{10} - \frac{193}{28608} a^{9} + \frac{2261}{57216} a^{8} - \frac{141}{2384} a^{7} + \frac{455}{19072} a^{6} + \frac{1103}{4768} a^{5} - \frac{4957}{57216} a^{4} - \frac{3791}{14304} a^{3} - \frac{6619}{14304} a^{2} - \frac{65}{3576} a - \frac{27}{298}$, $\frac{1}{4027813698328014668056948477057814788602192312288768} a^{15} - \frac{16955072650023459644984804826692925055024198733}{2013906849164007334028474238528907394301096156144384} a^{14} + \frac{263215193555206474451647197185785586806044779887}{1342604566109338222685649492352604929534064104096256} a^{13} + \frac{3610154721936573738484269534349099512734140773519}{671302283054669111342824746176302464767032052048128} a^{12} - \frac{10864044568917990270573146398162158187080983482107}{1342604566109338222685649492352604929534064104096256} a^{11} + \frac{34130798291590299987319605035607576229468325084665}{2013906849164007334028474238528907394301096156144384} a^{10} + \frac{2393795519238094273881889091968818056621986788415}{1342604566109338222685649492352604929534064104096256} a^{9} - \frac{7240303423416346793565423430843636160907376932931}{1006953424582003667014237119264453697150548078072192} a^{8} + \frac{53448406961809892731994132208616318072492740139933}{4027813698328014668056948477057814788602192312288768} a^{7} - \frac{1814242680950291343481856648903070500044146426513}{167825570763667277835706186544075616191758013012032} a^{6} + \frac{791016257234469842848949488150161231162450243058219}{4027813698328014668056948477057814788602192312288768} a^{5} + \frac{41665759158125414063292362043133887155450571984381}{167825570763667277835706186544075616191758013012032} a^{4} + \frac{271815066250794207916452696980859998911209976669597}{1006953424582003667014237119264453697150548078072192} a^{3} - \frac{3556943525853040704989953046783828452774664670461}{20978196345458409729463273318009452023969751626504} a^{2} - \frac{1001030942818295704654206480872765534753981029}{22901961075827958219938071307870580812194051994} a + \frac{5856338439165397876053770261375526358477167066785}{15733647259093807297097454988507089017977313719878}$
Class group and class number
$C_{53}\times C_{106}$, which has order $5618$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17392693.3571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{265}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{5}, \sqrt{53})\), 4.4.18609625.2, 4.4.18609625.1, 8.8.346318142640625.1, 8.0.91774307799765625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 53 | Data not computed | ||||||