Normalized defining polynomial
\( x^{16} - 7 x^{15} + 351 x^{14} - 1774 x^{13} + 47083 x^{12} - 168953 x^{11} + 3176992 x^{10} - 8025465 x^{9} + 119353024 x^{8} - 236695503 x^{7} + 2590238519 x^{6} - 5204344770 x^{5} + 28709400122 x^{4} - 57922541292 x^{3} + 48526186028 x^{2} - 62534007816 x + 111288111496 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8403621967231401423280940753903439872=2^{12}\cdot 163^{10}\cdot 173^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 163, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2143903239372789981080936640085443637831640306377429378886891690153577260815848} a^{15} - \frac{7589907081177512509507901145978676180875750036834561588206384162022028512361}{267987904921598747635117080010680454728955038297178672360861461269197157601981} a^{14} - \frac{103177462502479235368362565395607957633700755654860773107254237332851991795867}{1071951619686394990540468320042721818915820153188714689443445845076788630407924} a^{13} - \frac{170856929791498509899182916349614326943315566015521206855600260652309908592513}{714634413124263327026978880028481212610546768792476459628963896717859086938616} a^{12} + \frac{8021593756325861244690230313864123773178606943897271853977437280591965101829}{306271891338969997297276662869349091118805758053918482698127384307653894402264} a^{11} + \frac{11624373985785922730919641512288104989814139631683424899759249103471976035901}{357317206562131663513489440014240606305273384396238229814481948358929543469308} a^{10} + \frac{10606224504416984180613720555856478708172974285562032815723210004389840148453}{126111955257222940063584508240320213990096488610437022287464217067857485930344} a^{9} - \frac{928441524706117262382941765196742845592904764065932992105791066785188982956027}{2143903239372789981080936640085443637831640306377429378886891690153577260815848} a^{8} - \frac{1047518210186503477783851755098444559815146838915891646589541265537777816272969}{2143903239372789981080936640085443637831640306377429378886891690153577260815848} a^{7} - \frac{932320731606355671791683289210879689483671447080540596915467281317692907559063}{2143903239372789981080936640085443637831640306377429378886891690153577260815848} a^{6} - \frac{81533101855610860754777434827411946092688685600283513818930030542508253482173}{267987904921598747635117080010680454728955038297178672360861461269197157601981} a^{5} + \frac{353474406197009774558733984912010235219887091476103510435657388700524571774391}{2143903239372789981080936640085443637831640306377429378886891690153577260815848} a^{4} - \frac{22054870598584028392501329273167620293064277494526787399146423087872624022035}{51045315223161666216212777144891515186467626342319747116354564051275649067044} a^{3} + \frac{584166712549432209082070401418490566989511105210857931981201495322867376583}{3646093944511547586872341224635108227604830453022839079739611717948260647646} a^{2} - \frac{127359330631868898409639083626086044457797045616495685175106869515694453080341}{535975809843197495270234160021360909457910076594357344721722922538394315203962} a + \frac{262803469990727467231218010546442487351055902211752672732896293260988441036705}{535975809843197495270234160021360909457910076594357344721722922538394315203962}$
Class group and class number
$C_{2}\times C_{2}\times C_{2764680}$, which has order $11058720$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130210.312973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 48 conjugacy class representatives for t16n1518 |
| Character table for t16n1518 is not computed |
Intermediate fields
| 4.4.26569.1, 8.8.122122734653.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $163$ | 163.4.0.1 | $x^{4} - x + 42$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 163.12.10.5 | $x^{12} + 5216 x^{6} + 35363339$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |
| $173$ | 173.4.2.1 | $x^{4} + 1557 x^{2} + 748225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 173.6.0.1 | $x^{6} - x + 19$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 173.6.3.2 | $x^{6} - 29929 x^{2} + 25888585$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |