Normalized defining polynomial
\( x^{16} - 6 x^{15} + 277 x^{14} - 1338 x^{13} + 27774 x^{12} - 101750 x^{11} + 1294224 x^{10} - 3759386 x^{9} + 31550961 x^{8} - 70606372 x^{7} + 378425631 x^{6} - 549401298 x^{5} + 2530352237 x^{4} - 2407813268 x^{3} + 14049903847 x^{2} - 16854186966 x + 57550982508 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8403621967231401423280940753903439872=2^{12}\cdot 163^{10}\cdot 173^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 163, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{800004} a^{14} + \frac{50837}{800004} a^{13} + \frac{26720}{200001} a^{12} + \frac{81385}{800004} a^{11} + \frac{29993}{800004} a^{10} - \frac{80971}{800004} a^{9} + \frac{28307}{400002} a^{8} + \frac{10550}{66667} a^{7} + \frac{25761}{133334} a^{6} - \frac{83995}{800004} a^{5} - \frac{46253}{800004} a^{4} + \frac{26864}{200001} a^{3} + \frac{55115}{266668} a^{2} - \frac{7777}{400002} a - \frac{8618}{66667}$, $\frac{1}{23136016466361882302691899850766100865969627652520157432945644960097588} a^{15} - \frac{3038907370782595988710560343960556997225993441080650425959984795}{7712005488787294100897299950255366955323209217506719144315214986699196} a^{14} + \frac{130396211068150936958790138229635831334123699784112160433785991683675}{5784004116590470575672974962691525216492406913130039358236411240024397} a^{13} + \frac{1229925422200047346258798424741025339922492518749861125817407079917863}{7712005488787294100897299950255366955323209217506719144315214986699196} a^{12} - \frac{119065559010414828615790045854222109137377672703298336392259500563571}{7712005488787294100897299950255366955323209217506719144315214986699196} a^{11} + \frac{2701865872612400606122746774672580304243148444971194003650772659461473}{23136016466361882302691899850766100865969627652520157432945644960097588} a^{10} + \frac{549858592392258825813936138414707680827712281541007836358884831810579}{3856002744393647050448649975127683477661604608753359572157607493349598} a^{9} + \frac{632979236542976765055611979465448794751049329511107696600025697038795}{11568008233180941151345949925383050432984813826260078716472822480048794} a^{8} - \frac{1822302469943019464790893797471567037119741806135468090089064680916909}{3856002744393647050448649975127683477661604608753359572157607493349598} a^{7} + \frac{6176590477376476813989055618701107904315057538558297901460444081995111}{23136016466361882302691899850766100865969627652520157432945644960097588} a^{6} + \frac{208156441146892144175566182447997011290885649041073472584993151885631}{7712005488787294100897299950255366955323209217506719144315214986699196} a^{5} + \frac{119933437209116962391244738936405195313153404773270114866322018186521}{3856002744393647050448649975127683477661604608753359572157607493349598} a^{4} - \frac{4708683557934190160897971737191197867398384959311674012612926404878613}{23136016466361882302691899850766100865969627652520157432945644960097588} a^{3} - \frac{3507408798485915404414753110039544639272805520116569831859152670398031}{11568008233180941151345949925383050432984813826260078716472822480048794} a^{2} + \frac{3166026336890241321943082947279237787170375955865409862298519354283853}{11568008233180941151345949925383050432984813826260078716472822480048794} a + \frac{835370790120344879411643335409076333881955369549256471876247529928485}{1928001372196823525224324987563841738830802304376679786078803746674799}$
Class group and class number
$C_{2}\times C_{2}\times C_{2848108}$, which has order $11392432$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130210.312973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 48 conjugacy class representatives for t16n1518 |
| Character table for t16n1518 is not computed |
Intermediate fields
| 4.4.26569.1, 8.8.122122734653.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $163$ | 163.4.2.2 | $x^{4} - 163 x^{2} + 292259$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 163.12.8.1 | $x^{12} - 489 x^{9} + 79707 x^{6} - 4330747 x^{3} + 52299590548968$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $173$ | 173.4.2.1 | $x^{4} + 1557 x^{2} + 748225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 173.6.3.2 | $x^{6} - 29929 x^{2} + 25888585$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.6.0.1 | $x^{6} - x + 19$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |