Normalized defining polynomial
\( x^{16} - 2 x^{15} + 52 x^{14} - 160 x^{13} + 1377 x^{12} - 4670 x^{11} + 22994 x^{10} - 70205 x^{9} + 236402 x^{8} - 628712 x^{7} + 1574231 x^{6} - 3303540 x^{5} + 5538260 x^{4} - 7740329 x^{3} + 7719080 x^{2} - 5374135 x + 2660159 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(83680629612698426645202702769=17^{14}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{1742} a^{14} + \frac{72}{871} a^{13} - \frac{10}{871} a^{12} - \frac{243}{1742} a^{11} + \frac{112}{871} a^{10} - \frac{108}{871} a^{9} - \frac{161}{1742} a^{8} - \frac{425}{871} a^{7} + \frac{185}{871} a^{6} + \frac{491}{1742} a^{5} - \frac{381}{871} a^{4} - \frac{26}{67} a^{3} + \frac{145}{1742} a^{2} - \frac{172}{871} a + \frac{302}{871}$, $\frac{1}{263666683339880233293287611703924981199314086} a^{15} + \frac{23253129357075535590333751632812108566347}{263666683339880233293287611703924981199314086} a^{14} + \frac{10159926541492710699161457774316919107919195}{131833341669940116646643805851962490599657043} a^{13} - \frac{24187000509884619236381784372023661961743}{20282052564606171791791354746455767784562622} a^{12} - \frac{11617168569564562643939740260414062319998047}{263666683339880233293287611703924981199314086} a^{11} - \frac{25471598238912300151772229810594702448946377}{131833341669940116646643805851962490599657043} a^{10} - \frac{113706155356527955627298142471331081554889791}{263666683339880233293287611703924981199314086} a^{9} + \frac{48144547729802376065580691353737611343990635}{263666683339880233293287611703924981199314086} a^{8} + \frac{52433776201424930480329797215229336855845881}{131833341669940116646643805851962490599657043} a^{7} - \frac{1871844664980246160258859233027591518557769}{3935323631938510944675934503043656435810658} a^{6} - \frac{126872267781937879546525089190839703893742663}{263666683339880233293287611703924981199314086} a^{5} - \frac{27545635085171551494233885434918546180781755}{131833341669940116646643805851962490599657043} a^{4} - \frac{69167388056731706559509818244703736974743373}{263666683339880233293287611703924981199314086} a^{3} - \frac{105754712554621666855674176988511688514586483}{263666683339880233293287611703924981199314086} a^{2} + \frac{15612371852408136158286980669417286260092420}{131833341669940116646643805851962490599657043} a + \frac{58272125066733218811944547522155417112648856}{131833341669940116646643805851962490599657043}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2253287.49487 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.0.3250292628833.2, 8.4.289276043966137.1, 8.4.2148243641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 89 | Data not computed | ||||||