Normalized defining polynomial
\( x^{16} - 7 x^{15} + 65 x^{14} - 407 x^{13} + 2151 x^{12} - 10072 x^{11} + 42053 x^{10} - 148549 x^{9} + 441642 x^{8} - 1087932 x^{7} + 2206158 x^{6} - 3596503 x^{5} + 4676785 x^{4} - 4672450 x^{3} + 3526208 x^{2} - 1788400 x + 554608 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(83680629612698426645202702769=17^{14}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8164} a^{14} - \frac{329}{8164} a^{13} + \frac{1279}{8164} a^{12} - \frac{1929}{8164} a^{11} - \frac{587}{8164} a^{10} + \frac{957}{4082} a^{9} + \frac{3457}{8164} a^{8} - \frac{3655}{8164} a^{7} + \frac{948}{2041} a^{6} - \frac{366}{2041} a^{5} - \frac{173}{4082} a^{4} - \frac{3047}{8164} a^{3} + \frac{2939}{8164} a^{2} + \frac{528}{2041} a + \frac{1009}{2041}$, $\frac{1}{6675435632359660659691871969456994392} a^{15} - \frac{18344745214024541651906069738539}{513495048643050819976297843804384184} a^{14} + \frac{713821291680891733458469201611349761}{6675435632359660659691871969456994392} a^{13} - \frac{287581047960796741146210408964452459}{6675435632359660659691871969456994392} a^{12} + \frac{1101755756540632730985715661676219643}{6675435632359660659691871969456994392} a^{11} - \frac{365683411333127572548226500719126751}{1668858908089915164922967992364248598} a^{10} - \frac{1485651606007649374714277143163808803}{6675435632359660659691871969456994392} a^{9} + \frac{1389399568827765124948423159647389375}{6675435632359660659691871969456994392} a^{8} + \frac{308207506860723764527132425776494277}{3337717816179830329845935984728497196} a^{7} - \frac{373735870906768124722480849187517711}{1668858908089915164922967992364248598} a^{6} - \frac{228477361753217301463170135543104233}{3337717816179830329845935984728497196} a^{5} - \frac{2094475168202388054450758789699358627}{6675435632359660659691871969456994392} a^{4} - \frac{1375735317744905572883053781905492775}{6675435632359660659691871969456994392} a^{3} - \frac{1337096545877511726584276672741663317}{3337717816179830329845935984728497196} a^{2} - \frac{326336134839797124008575359902934893}{834429454044957582461483996182124299} a + \frac{184095900044551560584004599035226294}{834429454044957582461483996182124299}$
Class group and class number
$C_{2}\times C_{28}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1325060.89169 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.437257.1, 4.4.4913.1, 4.0.25721.1, 8.4.3250292628833.1 x2, 8.0.191193684049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| $89$ | 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |