Normalized defining polynomial
\( x^{16} - 4 x^{15} + 190 x^{14} - 656 x^{13} + 15581 x^{12} - 44888 x^{11} + 690830 x^{10} - 1624572 x^{9} + 17396206 x^{8} - 32228676 x^{7} + 264514286 x^{6} - 336400104 x^{5} + 2957550889 x^{4} - 1919250704 x^{3} + 20206455030 x^{2} - 4833136668 x + 58736635127 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8360912611710390029718223769930039296=2^{44}\cdot 13^{8}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3536=2^{4}\cdot 13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3536}(1665,·)$, $\chi_{3536}(259,·)$, $\chi_{3536}(1,·)$, $\chi_{3536}(1611,·)$, $\chi_{3536}(1041,·)$, $\chi_{3536}(2755,·)$, $\chi_{3536}(3379,·)$, $\chi_{3536}(2393,·)$, $\chi_{3536}(2651,·)$, $\chi_{3536}(987,·)$, $\chi_{3536}(3433,·)$, $\chi_{3536}(2027,·)$, $\chi_{3536}(625,·)$, $\chi_{3536}(883,·)$, $\chi_{3536}(1769,·)$, $\chi_{3536}(2809,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{2}{13} a^{7} + \frac{2}{13} a^{6} + \frac{1}{13} a^{5} - \frac{3}{13} a^{4} - \frac{1}{13} a^{3} + \frac{2}{13} a^{2} + \frac{2}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{9} - \frac{2}{13} a^{7} + \frac{5}{13} a^{6} - \frac{1}{13} a^{5} + \frac{6}{13} a^{4} + \frac{6}{13} a^{2} + \frac{5}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{10} + \frac{1}{13} a^{7} + \frac{3}{13} a^{6} - \frac{5}{13} a^{5} - \frac{6}{13} a^{4} + \frac{4}{13} a^{3} - \frac{4}{13} a^{2} + \frac{6}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{11} + \frac{5}{13} a^{7} + \frac{6}{13} a^{6} + \frac{6}{13} a^{5} - \frac{6}{13} a^{4} - \frac{3}{13} a^{3} + \frac{4}{13} a^{2} - \frac{1}{13}$, $\frac{1}{104} a^{12} - \frac{1}{26} a^{10} - \frac{1}{26} a^{9} - \frac{1}{52} a^{8} + \frac{3}{13} a^{7} + \frac{19}{52} a^{6} + \frac{3}{13} a^{5} - \frac{1}{13} a^{4} - \frac{11}{26} a^{3} + \frac{1}{26} a^{2} + \frac{4}{13} a - \frac{23}{104}$, $\frac{1}{104} a^{13} - \frac{1}{26} a^{11} - \frac{1}{26} a^{10} - \frac{1}{52} a^{9} - \frac{9}{52} a^{7} - \frac{3}{13} a^{6} - \frac{4}{13} a^{5} + \frac{7}{26} a^{4} + \frac{7}{26} a^{3} - \frac{2}{13} a^{2} + \frac{33}{104} a - \frac{3}{13}$, $\frac{1}{43898777277681402707280} a^{14} + \frac{21953186114097612241}{10974694319420350676820} a^{13} + \frac{133350996106103249083}{43898777277681402707280} a^{12} + \frac{2283140447433566789}{233504134455752142060} a^{11} + \frac{102733180689271558529}{4389877727768140270728} a^{10} - \frac{28133825097913982093}{3658231439806783558940} a^{9} - \frac{173010262609436492161}{5487347159710175338410} a^{8} - \frac{495494455191325740322}{2743673579855087669205} a^{7} + \frac{1655933617325284884367}{7316462879613567117880} a^{6} - \frac{3835552696943081383273}{10974694319420350676820} a^{5} + \frac{156727131679657721111}{3658231439806783558940} a^{4} - \frac{18915185822228319745}{46700826891150428412} a^{3} + \frac{9885051788673211948301}{43898777277681402707280} a^{2} + \frac{421028596101014363881}{10974694319420350676820} a - \frac{205955974488535323271}{934016537823008568240}$, $\frac{1}{1580903554755630537798724995242989406702640} a^{15} - \frac{11726872603088149889}{1580903554755630537798724995242989406702640} a^{14} - \frac{2337149149402560271321108487725362954389}{1580903554755630537798724995242989406702640} a^{13} + \frac{2591284530289163305206272112627909827113}{1580903554755630537798724995242989406702640} a^{12} - \frac{9182792055584889556498149666812518639433}{790451777377815268899362497621494703351320} a^{11} - \frac{38722822353505545485585626238712132549}{2960493548231517861046301489219081285960} a^{10} + \frac{1306299699270021405073980115789225518659}{79045177737781526889936249762149470335132} a^{9} - \frac{1039994528482865641692047054288449210843}{98806472172226908612420312202686837918915} a^{8} - \frac{12204128481277588563978619876598420948517}{263483925792605089633120832540498234450440} a^{7} - \frac{148802773902719438151133203958334292558119}{790451777377815268899362497621494703351320} a^{6} + \frac{14384652548618796203362488447009375927447}{65870981448151272408280208135124558612610} a^{5} - \frac{20364939545571630610856395445910312141271}{98806472172226908612420312202686837918915} a^{4} + \frac{732985194840630183255288430369044053104361}{1580903554755630537798724995242989406702640} a^{3} - \frac{743889470552374482526062378555480709729469}{1580903554755630537798724995242989406702640} a^{2} + \frac{211616753523157694963432791050513246486151}{1580903554755630537798724995242989406702640} a + \frac{3452785728271631377339376004619172706741}{11212081948621493175877482235765882317040}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{116}\times C_{7540}$, which has order $13994240$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103646.40189541418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |