Normalized defining polynomial
\( x^{16} - 32 x^{14} + 119 x^{12} + 3692 x^{10} + 69261 x^{8} - 773720 x^{6} + 3490440 x^{4} + 2018400 x^{2} + 336400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8356211030901640462336000000000000=2^{28}\cdot 5^{12}\cdot 11^{8}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{12} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{8} - \frac{5}{12} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{12} a^{11} + \frac{1}{6} a^{9} - \frac{5}{12} a^{7} - \frac{1}{6} a^{5} - \frac{1}{4} a^{3} + \frac{1}{6} a$, $\frac{1}{6960} a^{12} - \frac{2}{435} a^{10} + \frac{1859}{6960} a^{8} - \frac{79}{580} a^{6} + \frac{2561}{6960} a^{4} + \frac{1}{6} a^{2} + \frac{1}{12}$, $\frac{1}{13920} a^{13} - \frac{1}{435} a^{11} + \frac{1859}{13920} a^{9} - \frac{79}{1160} a^{7} - \frac{4399}{13920} a^{5} - \frac{5}{12} a^{3} - \frac{11}{24} a$, $\frac{1}{841426692716599527360} a^{14} + \frac{8138495554359571}{140237782119433254560} a^{12} + \frac{33342770726101785523}{841426692716599527360} a^{10} - \frac{1}{2} a^{9} - \frac{104283564122424064543}{420713346358299763680} a^{8} + \frac{210576452311236999257}{841426692716599527360} a^{6} - \frac{1}{2} a^{5} - \frac{33814198418442194377}{140237782119433254560} a^{4} - \frac{102761668342821331}{1450735677097585392} a^{2} - \frac{1}{2} a - \frac{313863644567622047}{725367838548792696}$, $\frac{1}{8414266927165995273600} a^{15} + \frac{145310126421210829}{4207133463582997636800} a^{13} - \frac{1}{13920} a^{12} - \frac{44513377278135297181}{8414266927165995273600} a^{11} + \frac{1}{435} a^{10} - \frac{684408683887757302193}{1402377821194332545600} a^{9} - \frac{1859}{13920} a^{8} - \frac{509472022088197883639}{8414266927165995273600} a^{7} + \frac{79}{1160} a^{6} - \frac{37542614966108875609}{280475564238866509120} a^{5} + \frac{4399}{13920} a^{4} + \frac{2182147839451481683}{4835785590325284640} a^{3} + \frac{5}{12} a^{2} - \frac{497993432042800027}{1450735677097585392} a + \frac{11}{24}$
Class group and class number
$C_{2}\times C_{4}\times C_{16}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 555036871.779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{55}) \), 4.0.7018000.3, 4.0.3625.1, \(\Q(\sqrt{5}, \sqrt{11})\), 8.0.49252324000000.63 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.30 | $x^{8} + 8 x^{7} + 20$ | $4$ | $2$ | $16$ | $C_2^3: C_4$ | $[2, 2, 3]^{4}$ |
| 2.8.12.20 | $x^{8} + 8 x^{6} + 12 x^{4} + 80$ | $4$ | $2$ | $12$ | $C_2^3: C_4$ | $[2, 2, 2]^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.6.2 | $x^{8} + 145 x^{4} + 7569$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |