Normalized defining polynomial
\( x^{16} + 64 x^{14} + 2224 x^{12} - 592 x^{11} + 41104 x^{10} - 36672 x^{9} + 458360 x^{8} - 600224 x^{7} + 3274368 x^{6} - 4535584 x^{5} + 13795312 x^{4} - 14357632 x^{3} + 26002080 x^{2} - 13908224 x + 16366712 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(835586729888343128721772773376=2^{62}\cdot 7^{6}\cdot 17^{2}\cdot 73^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{28} a^{14} - \frac{1}{14} a^{13} - \frac{3}{28} a^{12} + \frac{1}{28} a^{11} + \frac{3}{14} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{7} + \frac{3}{14} a^{6} - \frac{1}{7} a^{5} + \frac{2}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{33445763835484077513345662047861319791757573756} a^{15} - \frac{177941839548243027927796892451497633677799973}{33445763835484077513345662047861319791757573756} a^{14} - \frac{525024696834364267757020821641529947488030357}{8361440958871019378336415511965329947939393439} a^{13} + \frac{649390731634005329211163065537159501561138057}{33445763835484077513345662047861319791757573756} a^{12} + \frac{290329350382469028657597281067284785482994637}{4777966262212011073335094578265902827393939108} a^{11} + \frac{1331649510612712198320010133535241178389645617}{16722881917742038756672831023930659895878786878} a^{10} + \frac{551760585769669836329802512377080251026072241}{8361440958871019378336415511965329947939393439} a^{9} + \frac{3293794831905708622491375710220640767854991845}{16722881917742038756672831023930659895878786878} a^{8} - \frac{502568630127363705677883649773374740548924530}{8361440958871019378336415511965329947939393439} a^{7} - \frac{2084303479448006222162356581962621560423907770}{8361440958871019378336415511965329947939393439} a^{6} + \frac{3928988326429785316938946547951212168893017765}{8361440958871019378336415511965329947939393439} a^{5} + \frac{3638485985031995113927161813508136829951431439}{8361440958871019378336415511965329947939393439} a^{4} + \frac{492029195790107349682791268454287434442151180}{1194491565553002768333773644566475706848484777} a^{3} + \frac{1637442571663961797063453862907423498123690534}{8361440958871019378336415511965329947939393439} a^{2} - \frac{1779826831262150500635106351476099803116792495}{8361440958871019378336415511965329947939393439} a - \frac{1157983220550047615171453334985181805375992424}{8361440958871019378336415511965329947939393439}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{1446}$, which has order $11568$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20726.065235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 97 conjugacy class representatives for t16n1086 are not computed |
| Character table for t16n1086 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.7168.1, 4.4.14336.1, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $73$ | 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |