Normalized defining polynomial
\( x^{16} - 8 x^{15} + 96 x^{14} - 400 x^{13} + 2668 x^{12} - 6304 x^{11} + 33752 x^{10} - 44128 x^{9} + 246024 x^{8} - 180656 x^{7} + 1196888 x^{6} - 721360 x^{5} + 3884800 x^{4} - 2790640 x^{3} + 7393712 x^{2} - 5546400 x + 6575522 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(835586729888343128721772773376=2^{62}\cdot 7^{6}\cdot 17^{2}\cdot 73^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3689} a^{14} + \frac{1129}{3689} a^{13} + \frac{44}{119} a^{12} - \frac{180}{527} a^{11} - \frac{666}{3689} a^{10} + \frac{60}{527} a^{9} - \frac{718}{3689} a^{8} + \frac{1388}{3689} a^{7} + \frac{226}{527} a^{6} - \frac{143}{3689} a^{5} - \frac{1472}{3689} a^{4} - \frac{827}{3689} a^{3} - \frac{1040}{3689} a^{2} - \frac{1742}{3689} a - \frac{120}{3689}$, $\frac{1}{44713901801044955291996230575241922553914681} a^{15} + \frac{1886690256776177759703220883634568775847}{44713901801044955291996230575241922553914681} a^{14} - \frac{19091569775659995515211228830609470022814178}{44713901801044955291996230575241922553914681} a^{13} - \frac{21694107145911686274298515376117955346105850}{44713901801044955291996230575241922553914681} a^{12} - \frac{13893633862909439302583657097618321901892846}{44713901801044955291996230575241922553914681} a^{11} - \frac{16328014650230601789284450834423558020832046}{44713901801044955291996230575241922553914681} a^{10} + \frac{10613779740934688380440788867487716652907006}{44713901801044955291996230575241922553914681} a^{9} - \frac{8026434323275992247917258295631808464018315}{44713901801044955291996230575241922553914681} a^{8} + \frac{17583279007383275617273371647976110995522783}{44713901801044955291996230575241922553914681} a^{7} - \frac{20200244166834739109506905271392291666319249}{44713901801044955291996230575241922553914681} a^{6} + \frac{11534774512310214338517750309002067142971652}{44713901801044955291996230575241922553914681} a^{5} - \frac{51515132782971306998398003846887352422961}{44713901801044955291996230575241922553914681} a^{4} - \frac{20348982029171556304807465078048642956603563}{44713901801044955291996230575241922553914681} a^{3} - \frac{11167661110587684413620419052651181651163323}{44713901801044955291996230575241922553914681} a^{2} + \frac{2200736986544141966793059966860692648156933}{6387700257292136470285175796463131793416383} a - \frac{2165442399312804279885267536767188984901133}{44713901801044955291996230575241922553914681}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{1876}$, which has order $15008$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20726.065235 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 97 conjugacy class representatives for t16n1086 are not computed |
| Character table for t16n1086 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.7168.1, \(\Q(\zeta_{16})^+\), 4.4.14336.1, 8.8.3288334336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $73$ | 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |