Normalized defining polynomial
\( x^{16} + 17 x^{14} - 12 x^{13} + 100 x^{12} - 54 x^{11} + 410 x^{10} - 126 x^{9} + 1165 x^{8} + 96 x^{7} + 3590 x^{6} - 5748 x^{5} + 10306 x^{4} - 9336 x^{3} - 3604 x^{2} + 5880 x + 6196 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8325384592016962870050816=2^{26}\cdot 3^{14}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{633350389759279475887499593692326} a^{15} - \frac{74908409049340673546908137794655}{316675194879639737943749796846163} a^{14} + \frac{62202415224986800950855428673087}{316675194879639737943749796846163} a^{13} + \frac{50071601817254928860367022607220}{316675194879639737943749796846163} a^{12} - \frac{258007946079185203571600566662219}{633350389759279475887499593692326} a^{11} - \frac{41159354422393659418678657035422}{316675194879639737943749796846163} a^{10} - \frac{107168469567326296128205002029156}{316675194879639737943749796846163} a^{9} - \frac{134402861096080123550724424405752}{316675194879639737943749796846163} a^{8} + \frac{7484922133764226012271039229263}{633350389759279475887499593692326} a^{7} + \frac{46978105621799107300877833493309}{316675194879639737943749796846163} a^{6} + \frac{33864433372507954845396355014987}{633350389759279475887499593692326} a^{5} - \frac{104768884294547978966225802759151}{316675194879639737943749796846163} a^{4} - \frac{13299922554285565837981784934199}{316675194879639737943749796846163} a^{3} - \frac{29372622131508635750560319663797}{316675194879639737943749796846163} a^{2} - \frac{52643566232655353915462734397122}{316675194879639737943749796846163} a + \frac{77258179486073388572934269603992}{316675194879639737943749796846163}$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15290.5686164 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_2^2.C_2$ (as 16T406):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_4^2:C_2^2.C_2$ |
| Character table for $C_4^2:C_2^2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{11}) \), 4.4.4752.1 x2, 4.4.13068.1 x2, \(\Q(\sqrt{3}, \sqrt{11})\), 8.8.2732361984.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.18.3 | $x^{8} + 14 x^{6} + 10 x^{4} + 8 x^{3} + 12 x^{2} + 20$ | $4$ | $2$ | $18$ | $Q_8:C_2$ | $[2, 3, 7/2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |