Normalized defining polynomial
\( x^{16} - 2 x^{15} + 12 x^{14} - 6 x^{13} + 26 x^{12} + 68 x^{11} - 30 x^{10} + 222 x^{9} + 199 x^{8} - 224 x^{7} + 1210 x^{6} - 994 x^{5} + 1546 x^{4} - 698 x^{3} + 778 x^{2} - 184 x + 181 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8294400000000000000=2^{24}\cdot 3^{4}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{3}{10} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{3}{10} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{610} a^{14} - \frac{5}{122} a^{13} + \frac{12}{305} a^{12} - \frac{147}{610} a^{11} + \frac{41}{305} a^{10} - \frac{2}{305} a^{9} - \frac{11}{61} a^{8} - \frac{181}{610} a^{7} + \frac{84}{305} a^{6} + \frac{16}{305} a^{5} - \frac{146}{305} a^{4} - \frac{31}{122} a^{3} - \frac{73}{610} a^{2} - \frac{21}{610} a + \frac{13}{305}$, $\frac{1}{8128293310} a^{15} - \frac{3165083}{4064146655} a^{14} + \frac{195192953}{8128293310} a^{13} + \frac{184167763}{4064146655} a^{12} + \frac{1820426381}{8128293310} a^{11} - \frac{773554479}{4064146655} a^{10} - \frac{730587197}{4064146655} a^{9} + \frac{290543622}{4064146655} a^{8} - \frac{2150133481}{8128293310} a^{7} + \frac{59496933}{812829331} a^{6} - \frac{393469047}{4064146655} a^{5} - \frac{124069431}{812829331} a^{4} - \frac{1980555646}{4064146655} a^{3} + \frac{163170073}{812829331} a^{2} - \frac{2022331091}{8128293310} a - \frac{589866062}{4064146655}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3186199}{8128293310} a^{15} + \frac{37306007}{4064146655} a^{14} - \frac{181010009}{8128293310} a^{13} + \frac{646166013}{8128293310} a^{12} - \frac{28735922}{812829331} a^{11} - \frac{100097744}{4064146655} a^{10} + \frac{4106833889}{8128293310} a^{9} - \frac{2257117042}{4064146655} a^{8} + \frac{836041099}{4064146655} a^{7} + \frac{1559886856}{812829331} a^{6} - \frac{31605400261}{8128293310} a^{5} + \frac{19730441766}{4064146655} a^{4} - \frac{27113715267}{8128293310} a^{3} + \frac{9383553417}{4064146655} a^{2} - \frac{1436236385}{812829331} a + \frac{11316744413}{8128293310} \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3660.4680193 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}:C_2$ (as 16T16):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $(C_8:C_2):C_2$ |
| Character table for $(C_8:C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), \(\Q(i, \sqrt{5})\), \(\Q(\zeta_{20})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |