Normalized defining polynomial
\( x^{16} - 6 x^{15} + 9 x^{14} + 4 x^{13} + 11 x^{12} - 58 x^{11} - 29 x^{10} + 32 x^{9} + 162 x^{8} + 98 x^{7} - 54 x^{6} - 182 x^{5} - 119 x^{4} + 6 x^{3} + 69 x^{2} + 46 x + 11 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8294400000000000000=2^{24}\cdot 3^{4}\cdot 5^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{1}{11} a^{13} - \frac{1}{11} a^{12} + \frac{4}{11} a^{11} + \frac{3}{11} a^{10} + \frac{3}{11} a^{9} + \frac{4}{11} a^{8} + \frac{4}{11} a^{7} - \frac{3}{11} a^{6} - \frac{3}{11} a^{5} + \frac{1}{11} a^{4} + \frac{3}{11} a^{3} + \frac{1}{11} a^{2} - \frac{4}{11} a$, $\frac{1}{1136416721} a^{15} - \frac{43453963}{1136416721} a^{14} + \frac{67576697}{1136416721} a^{13} + \frac{197081836}{1136416721} a^{12} + \frac{56920958}{1136416721} a^{11} + \frac{298624048}{1136416721} a^{10} + \frac{422147240}{1136416721} a^{9} + \frac{134606039}{1136416721} a^{8} - \frac{24890381}{103310611} a^{7} - \frac{498068909}{1136416721} a^{6} - \frac{484745298}{1136416721} a^{5} + \frac{440540112}{1136416721} a^{4} - \frac{228024428}{1136416721} a^{3} - \frac{402205018}{1136416721} a^{2} - \frac{219916502}{1136416721} a - \frac{22447846}{103310611}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{174906122}{1136416721} a^{15} - \frac{59303944}{103310611} a^{14} - \frac{762737724}{1136416721} a^{13} + \frac{4378426037}{1136416721} a^{12} + \frac{1940184860}{1136416721} a^{11} - \frac{3889865790}{1136416721} a^{10} - \frac{23345708982}{1136416721} a^{9} - \frac{4694820830}{1136416721} a^{8} + \frac{22501200574}{1136416721} a^{7} + \frac{59628961235}{1136416721} a^{6} + \frac{42129005522}{1136416721} a^{5} + \frac{4670922467}{1136416721} a^{4} - \frac{32263330196}{1136416721} a^{3} - \frac{35582847879}{1136416721} a^{2} - \frac{20546463368}{1136416721} a - \frac{468060820}{103310611} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3884.1943821 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}:C_2$ (as 16T16):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $(C_8:C_2):C_2$ |
| Character table for $(C_8:C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-2}) \), 4.4.8000.1, \(\Q(\zeta_{5})\), \(\Q(\sqrt{-2}, \sqrt{5})\), 8.0.64000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||