Normalized defining polynomial
\( x^{16} - 2 x^{15} + 10 x^{14} + 369 x^{13} + 820 x^{12} - 18754 x^{11} - 64949 x^{10} + 378230 x^{9} + 3768300 x^{8} + 8212415 x^{7} + 13124314 x^{6} + 37922114 x^{5} + 106741005 x^{4} + 159631694 x^{3} + 91351640 x^{2} + 478872560 x + 849081392 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8243206936713178643875538610721=13^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a$, $\frac{1}{10872934832004} a^{14} - \frac{5560165855}{2718233708001} a^{13} - \frac{433841204365}{5436467416002} a^{12} - \frac{4079386347095}{10872934832004} a^{11} - \frac{800601586367}{1812155805334} a^{10} + \frac{70556105635}{1812155805334} a^{9} - \frac{381106380565}{10872934832004} a^{8} - \frac{1142449104364}{2718233708001} a^{7} + \frac{61580551873}{2718233708001} a^{6} - \frac{550049167007}{3624311610668} a^{5} + \frac{112615124825}{388319101143} a^{4} + \frac{384187344479}{776638202286} a^{3} - \frac{207174116215}{517758801524} a^{2} - \frac{238616867416}{2718233708001} a - \frac{983490150929}{2718233708001}$, $\frac{1}{78018359819796247655545747162621026539493590799364945645752} a^{15} + \frac{1099496205830798692252061135326081936578713875}{39009179909898123827772873581310513269746795399682472822876} a^{14} + \frac{2422694137119174715136083447117646880008541349912288793701}{39009179909898123827772873581310513269746795399682472822876} a^{13} + \frac{2955568839611476802839862621773862662911504710484660012083}{26006119939932082551848582387540342179831196933121648548584} a^{12} + \frac{94159401833684834143783639039701432121166235546975963641}{6501529984983020637962145596885085544957799233280412137146} a^{11} + \frac{246682307430877458730307688098685216962047160303837003561}{5572739987128303403967553368758644752820970771383210403268} a^{10} - \frac{7448327151216708391261710329429449661877252064480953660997}{78018359819796247655545747162621026539493590799364945645752} a^{9} + \frac{17847857354357635007357828142122884551272442924205631825687}{39009179909898123827772873581310513269746795399682472822876} a^{8} - \frac{1865338055795838738946514035375194042230868790667222795233}{19504589954949061913886436790655256634873397699841236411438} a^{7} + \frac{26171931987860128800082479153412824167056838369061007473839}{78018359819796247655545747162621026539493590799364945645752} a^{6} - \frac{13353662581727987016595735558612234550300022830940807412007}{39009179909898123827772873581310513269746795399682472822876} a^{5} + \frac{2330865392376436305224557761550759457916152815578344501855}{5572739987128303403967553368758644752820970771383210403268} a^{4} - \frac{738194336177115822783157522287781064976193293212440652653}{11145479974256606807935106737517289505641941542766420806536} a^{3} - \frac{3958893368882962032219895725837613788735778219069443294535}{13003059969966041275924291193770171089915598466560824274292} a^{2} + \frac{4714070570989327691965154908380746678519407188649028075395}{9752294977474530956943218395327628317436698849920618205719} a + \frac{574441627431441299963235502085846975055230477093500447234}{9752294977474530956943218395327628317436698849920618205719}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8238717.72759 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |