Normalized defining polynomial
\( x^{16} - 31 x^{14} - 66 x^{13} + 581 x^{12} - 162 x^{11} - 940 x^{10} - 2149 x^{9} + 59327 x^{8} - 155387 x^{7} + 87135 x^{6} - 9376 x^{5} - 3004289 x^{4} + 3617292 x^{3} + 12664385 x^{2} - 3357557 x + 4004113 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8243206936713178643875538610721=13^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{1624} a^{12} - \frac{19}{1624} a^{11} - \frac{93}{812} a^{10} + \frac{12}{203} a^{9} - \frac{41}{812} a^{8} - \frac{615}{1624} a^{7} - \frac{729}{1624} a^{6} + \frac{337}{812} a^{5} - \frac{109}{1624} a^{4} - \frac{195}{1624} a^{3} + \frac{307}{1624} a^{2} + \frac{741}{1624} a + \frac{663}{1624}$, $\frac{1}{1624} a^{13} + \frac{265}{1624} a^{11} - \frac{95}{812} a^{10} + \frac{59}{812} a^{9} + \frac{263}{1624} a^{8} - \frac{117}{812} a^{7} - \frac{185}{1624} a^{6} + \frac{517}{1624} a^{5} - \frac{321}{812} a^{4} + \frac{331}{812} a^{3} - \frac{367}{812} a^{2} - \frac{49}{116} a + \frac{417}{1624}$, $\frac{1}{1624} a^{14} - \frac{27}{1624} a^{11} - \frac{31}{406} a^{10} - \frac{5}{1624} a^{9} + \frac{48}{203} a^{8} + \frac{195}{812} a^{7} - \frac{183}{812} a^{6} + \frac{25}{203} a^{5} - \frac{71}{232} a^{4} + \frac{597}{1624} a^{3} + \frac{27}{56} a^{2} - \frac{32}{203} a - \frac{303}{1624}$, $\frac{1}{2819449728188377606580651258380126844340006136} a^{15} + \frac{247700090075260480703864153297747247326665}{1409724864094188803290325629190063422170003068} a^{14} + \frac{84910827223515674823760215743853903958011}{402778532598339658082950179768589549191429448} a^{13} + \frac{191344086842681455974959395180890749358087}{2819449728188377606580651258380126844340006136} a^{12} + \frac{80556612405464359742030366769770062152598901}{2819449728188377606580651258380126844340006136} a^{11} + \frac{369965451905670644315979308971287990040274045}{2819449728188377606580651258380126844340006136} a^{10} - \frac{78771766901292354331304982637991313531339175}{352431216023547200822581407297515855542500767} a^{9} + \frac{40946636155750399288769651033035345266405007}{402778532598339658082950179768589549191429448} a^{8} - \frac{680002939812510648735504444674315813711965465}{1409724864094188803290325629190063422170003068} a^{7} - \frac{581198608308068150964925669711941447079369447}{2819449728188377606580651258380126844340006136} a^{6} - \frac{22480421274394536121674689768321267316514108}{50347316574792457260368772471073693648928681} a^{5} + \frac{509371685369116023644404941882195661106070847}{2819449728188377606580651258380126844340006136} a^{4} - \frac{869298091509509227256904775312307563704908015}{2819449728188377606580651258380126844340006136} a^{3} - \frac{696299366658161839502677430307233984415357987}{1409724864094188803290325629190063422170003068} a^{2} + \frac{655785803031931470802720896170743484796314445}{2819449728188377606580651258380126844340006136} a + \frac{1206735282396639803601870293360664543029184025}{2819449728188377606580651258380126844340006136}$
Class group and class number
$C_{2}\times C_{6}\times C_{30}$, which has order $360$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1447320.78419 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |