Properties

Label 16.0.824...721.1
Degree $16$
Signature $[0, 8]$
Discriminant $8.243\times 10^{30}$
Root discriminant \(85.56\)
Ramified primes $13,29$
Class number $144$ (GRH)
Class group [12, 12] (GRH)
Galois group $C_4:C_4$ (as 16T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 23*x^14 + 98*x^13 + 246*x^12 - 1492*x^11 + 537*x^10 + 7567*x^9 - 13310*x^8 - 1665*x^7 + 62333*x^6 - 30189*x^5 + 55705*x^4 + 235277*x^3 + 226780*x^2 + 67135*x + 58841)
 
Copy content gp:K = bnfinit(y^16 - 4*y^15 - 23*y^14 + 98*y^13 + 246*y^12 - 1492*y^11 + 537*y^10 + 7567*y^9 - 13310*y^8 - 1665*y^7 + 62333*y^6 - 30189*y^5 + 55705*y^4 + 235277*y^3 + 226780*y^2 + 67135*y + 58841, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 4*x^15 - 23*x^14 + 98*x^13 + 246*x^12 - 1492*x^11 + 537*x^10 + 7567*x^9 - 13310*x^8 - 1665*x^7 + 62333*x^6 - 30189*x^5 + 55705*x^4 + 235277*x^3 + 226780*x^2 + 67135*x + 58841);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 4*x^15 - 23*x^14 + 98*x^13 + 246*x^12 - 1492*x^11 + 537*x^10 + 7567*x^9 - 13310*x^8 - 1665*x^7 + 62333*x^6 - 30189*x^5 + 55705*x^4 + 235277*x^3 + 226780*x^2 + 67135*x + 58841)
 

\( x^{16} - 4 x^{15} - 23 x^{14} + 98 x^{13} + 246 x^{12} - 1492 x^{11} + 537 x^{10} + 7567 x^{9} + \cdots + 58841 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $16$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[0, 8]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(8243206936713178643875538610721\) \(\medspace = 13^{12}\cdot 29^{12}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(85.56\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $13^{3/4}29^{3/4}\approx 85.55709155460606$
Ramified primes:   \(13\), \(29\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$:   $C_4:C_4$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{128}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{214}a^{11}+\frac{31}{214}a^{10}-\frac{21}{107}a^{9}+\frac{15}{107}a^{8}-\frac{59}{214}a^{7}+\frac{95}{214}a^{6}-\frac{43}{214}a^{5}-\frac{7}{107}a^{4}+\frac{46}{107}a^{3}+\frac{81}{214}a^{2}-\frac{23}{107}a-\frac{53}{107}$, $\frac{1}{187892}a^{12}-\frac{3}{187892}a^{11}+\frac{25547}{187892}a^{10}+\frac{495}{187892}a^{9}-\frac{5486}{46973}a^{8}-\frac{467}{187892}a^{7}+\frac{35225}{93946}a^{6}-\frac{39961}{187892}a^{5}+\frac{13945}{46973}a^{4}+\frac{40395}{187892}a^{3}-\frac{29015}{187892}a^{2}+\frac{5233}{46973}a+\frac{54001}{187892}$, $\frac{1}{187892}a^{13}+\frac{19}{46973}a^{11}+\frac{19691}{93946}a^{10}+\frac{15539}{187892}a^{9}+\frac{15355}{187892}a^{8}+\frac{68171}{187892}a^{7}+\frac{7203}{187892}a^{6}-\frac{2643}{187892}a^{5}-\frac{93419}{187892}a^{4}-\frac{22394}{46973}a^{3}-\frac{61723}{187892}a^{2}-\frac{27195}{187892}a-\frac{51351}{187892}$, $\frac{1}{187892}a^{14}+\frac{25}{46973}a^{11}+\frac{43321}{187892}a^{10}+\frac{40073}{187892}a^{9}-\frac{13061}{187892}a^{8}-\frac{68811}{187892}a^{7}-\frac{91477}{187892}a^{6}+\frac{39193}{187892}a^{5}-\frac{4469}{46973}a^{4}+\frac{91395}{187892}a^{3}+\frac{11041}{187892}a^{2}+\frac{81331}{187892}a+\frac{20996}{46973}$, $\frac{1}{89\cdots 16}a^{15}-\frac{43\cdots 83}{22\cdots 79}a^{14}+\frac{30\cdots 09}{89\cdots 16}a^{13}+\frac{11\cdots 09}{89\cdots 16}a^{12}+\frac{59\cdots 09}{44\cdots 58}a^{11}-\frac{55\cdots 13}{44\cdots 58}a^{10}+\frac{98\cdots 23}{89\cdots 16}a^{9}-\frac{18\cdots 38}{22\cdots 79}a^{8}+\frac{32\cdots 11}{89\cdots 16}a^{7}+\frac{31\cdots 89}{44\cdots 58}a^{6}-\frac{14\cdots 73}{44\cdots 58}a^{5}+\frac{72\cdots 66}{22\cdots 79}a^{4}-\frac{91\cdots 15}{44\cdots 58}a^{3}-\frac{38\cdots 21}{89\cdots 16}a^{2}+\frac{62\cdots 31}{89\cdots 16}a-\frac{11\cdots 37}{44\cdots 58}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  $C_{12}\times C_{12}$, which has order $144$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{12}\times C_{12}$, which has order $144$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 
Relative class number:   $144$ (assuming GRH)

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $7$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{17\cdots 97}{44\cdots 58}a^{15}-\frac{17\cdots 91}{89\cdots 16}a^{14}-\frac{17\cdots 46}{22\cdots 79}a^{13}+\frac{46\cdots 85}{89\cdots 16}a^{12}+\frac{55\cdots 65}{89\cdots 16}a^{11}-\frac{35\cdots 51}{44\cdots 58}a^{10}+\frac{17\cdots 60}{20\cdots 97}a^{9}+\frac{37\cdots 63}{89\cdots 16}a^{8}-\frac{51\cdots 51}{44\cdots 58}a^{7}+\frac{83\cdots 95}{89\cdots 16}a^{6}+\frac{98\cdots 84}{22\cdots 79}a^{5}-\frac{23\cdots 37}{44\cdots 58}a^{4}+\frac{19\cdots 23}{22\cdots 79}a^{3}+\frac{20\cdots 10}{22\cdots 79}a^{2}-\frac{62\cdots 61}{89\cdots 16}a+\frac{44\cdots 87}{89\cdots 16}$, $\frac{33\cdots 11}{89\cdots 16}a^{15}-\frac{16\cdots 71}{89\cdots 16}a^{14}-\frac{31\cdots 39}{44\cdots 58}a^{13}+\frac{40\cdots 55}{89\cdots 16}a^{12}+\frac{23\cdots 61}{44\cdots 58}a^{11}-\frac{57\cdots 65}{89\cdots 16}a^{10}+\frac{68\cdots 71}{89\cdots 16}a^{9}+\frac{58\cdots 92}{22\cdots 79}a^{8}-\frac{69\cdots 69}{89\cdots 16}a^{7}+\frac{80\cdots 47}{22\cdots 79}a^{6}+\frac{11\cdots 21}{44\cdots 58}a^{5}-\frac{27\cdots 67}{89\cdots 16}a^{4}+\frac{19\cdots 31}{89\cdots 16}a^{3}+\frac{68\cdots 51}{89\cdots 16}a^{2}+\frac{39\cdots 95}{89\cdots 16}a-\frac{37\cdots 39}{89\cdots 16}$, $\frac{6422282}{74357590621183}a^{15}+\frac{234530571}{74357590621183}a^{14}-\frac{793143192}{74357590621183}a^{13}-\frac{6932269894}{74357590621183}a^{12}+\frac{17403713606}{74357590621183}a^{11}+\frac{94643823731}{74357590621183}a^{10}-\frac{272762732447}{74357590621183}a^{9}-\frac{442579958616}{74357590621183}a^{8}+\frac{1914533514433}{74357590621183}a^{7}+\frac{321746111967}{74357590621183}a^{6}-\frac{5053762395849}{74357590621183}a^{5}+\frac{9911102955808}{74357590621183}a^{4}+\frac{25171363320457}{74357590621183}a^{3}+\frac{19656243400414}{74357590621183}a^{2}+\frac{7337632379887}{74357590621183}a+\frac{27121527550912}{74357590621183}$, $\frac{469059064393}{22\cdots 36}a^{15}-\frac{2218221216177}{22\cdots 36}a^{14}-\frac{9545582523355}{22\cdots 36}a^{13}+\frac{54871547166995}{22\cdots 36}a^{12}+\frac{20549929920097}{56\cdots 59}a^{11}-\frac{807457451980453}{22\cdots 36}a^{10}+\frac{197905646344745}{56\cdots 59}a^{9}+\frac{36\cdots 61}{22\cdots 36}a^{8}-\frac{24\cdots 69}{56\cdots 59}a^{7}+\frac{32\cdots 47}{22\cdots 36}a^{6}+\frac{34\cdots 15}{22\cdots 36}a^{5}-\frac{10\cdots 55}{56\cdots 59}a^{4}+\frac{33\cdots 93}{22\cdots 36}a^{3}+\frac{26\cdots 45}{56\cdots 59}a^{2}+\frac{16\cdots 88}{56\cdots 59}a+\frac{65210894162613}{53262722236837}$, $\frac{43\cdots 83}{22\cdots 79}a^{15}-\frac{73\cdots 99}{89\cdots 16}a^{14}-\frac{43\cdots 27}{89\cdots 16}a^{13}+\frac{20\cdots 43}{89\cdots 16}a^{12}+\frac{45\cdots 81}{89\cdots 16}a^{11}-\frac{16\cdots 29}{44\cdots 58}a^{10}+\frac{13\cdots 99}{89\cdots 16}a^{9}+\frac{52\cdots 60}{22\cdots 79}a^{8}-\frac{43\cdots 23}{89\cdots 16}a^{7}-\frac{38\cdots 39}{44\cdots 58}a^{6}+\frac{19\cdots 43}{89\cdots 16}a^{5}-\frac{22\cdots 13}{89\cdots 16}a^{4}+\frac{49\cdots 49}{44\cdots 58}a^{3}+\frac{47\cdots 95}{89\cdots 16}a^{2}+\frac{33\cdots 59}{22\cdots 79}a-\frac{24\cdots 29}{44\cdots 58}$, $\frac{35\cdots 95}{44\cdots 58}a^{15}-\frac{37\cdots 63}{89\cdots 16}a^{14}-\frac{20\cdots 53}{89\cdots 16}a^{13}+\frac{10\cdots 67}{89\cdots 16}a^{12}+\frac{32\cdots 27}{89\cdots 16}a^{11}-\frac{38\cdots 81}{22\cdots 79}a^{10}-\frac{17\cdots 05}{89\cdots 16}a^{9}+\frac{23\cdots 25}{22\cdots 79}a^{8}+\frac{47\cdots 29}{89\cdots 16}a^{7}-\frac{86\cdots 51}{44\cdots 58}a^{6}-\frac{40\cdots 27}{89\cdots 16}a^{5}-\frac{63\cdots 21}{89\cdots 16}a^{4}-\frac{34\cdots 65}{22\cdots 79}a^{3}-\frac{11\cdots 05}{89\cdots 16}a^{2}-\frac{18\cdots 99}{44\cdots 58}a-\frac{52\cdots 19}{22\cdots 79}$, $\frac{42\cdots 61}{44\cdots 58}a^{15}-\frac{12\cdots 42}{22\cdots 79}a^{14}-\frac{45\cdots 91}{44\cdots 58}a^{13}+\frac{25\cdots 64}{22\cdots 79}a^{12}-\frac{11\cdots 33}{44\cdots 58}a^{11}-\frac{63\cdots 43}{44\cdots 58}a^{10}+\frac{76\cdots 49}{22\cdots 79}a^{9}+\frac{25\cdots 15}{22\cdots 79}a^{8}-\frac{29\cdots 36}{22\cdots 79}a^{7}+\frac{60\cdots 34}{22\cdots 79}a^{6}-\frac{11\cdots 97}{44\cdots 58}a^{5}-\frac{25\cdots 42}{22\cdots 79}a^{4}+\frac{28\cdots 71}{44\cdots 58}a^{3}+\frac{22\cdots 97}{22\cdots 79}a^{2}+\frac{78\cdots 15}{44\cdots 58}a+\frac{12\cdots 79}{44\cdots 58}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2985208.11128 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2985208.11128 \cdot 144}{2\cdot\sqrt{8243206936713178643875538610721}}\cr\approx \mathstrut & 0.181843572544 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 23*x^14 + 98*x^13 + 246*x^12 - 1492*x^11 + 537*x^10 + 7567*x^9 - 13310*x^8 - 1665*x^7 + 62333*x^6 - 30189*x^5 + 55705*x^4 + 235277*x^3 + 226780*x^2 + 67135*x + 58841) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^16 - 4*x^15 - 23*x^14 + 98*x^13 + 246*x^12 - 1492*x^11 + 537*x^10 + 7567*x^9 - 13310*x^8 - 1665*x^7 + 62333*x^6 - 30189*x^5 + 55705*x^4 + 235277*x^3 + 226780*x^2 + 67135*x + 58841, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 4*x^15 - 23*x^14 + 98*x^13 + 246*x^12 - 1492*x^11 + 537*x^10 + 7567*x^9 - 13310*x^8 - 1665*x^7 + 62333*x^6 - 30189*x^5 + 55705*x^4 + 235277*x^3 + 226780*x^2 + 67135*x + 58841); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 4*x^15 - 23*x^14 + 98*x^13 + 246*x^12 - 1492*x^11 + 537*x^10 + 7567*x^9 - 13310*x^8 - 1665*x^7 + 62333*x^6 - 30189*x^5 + 55705*x^4 + 235277*x^3 + 226780*x^2 + 67135*x + 58841); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_4:C_4$ (as 16T8):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A solvable group of order 16
The 10 conjugacy class representatives for $C_4:C_4$
Character table for $C_4:C_4$

Intermediate fields

\(\Q(\sqrt{13}) \), \(\Q(\sqrt{377}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{13}, \sqrt{29})\), 4.4.4121741.1 x2, 4.4.317057.1 x2, 4.0.1847677.1, 4.0.2197.1, 8.8.16988748871081.1, 8.0.3413910296329.2, 8.0.2871098559212689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ ${\href{/padicField/3.4.0.1}{4} }^{4}$ ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ R ${\href{/padicField/17.4.0.1}{4} }^{4}$ ${\href{/padicField/19.4.0.1}{4} }^{4}$ ${\href{/padicField/23.2.0.1}{2} }^{8}$ R ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(13\) Copy content Toggle raw display 13.2.4.6a1.2$x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24216 x^{4} + 14400 x^{3} + 3488 x^{2} + 384 x + 29$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
13.2.4.6a1.2$x^{8} + 48 x^{7} + 872 x^{6} + 7200 x^{5} + 24216 x^{4} + 14400 x^{3} + 3488 x^{2} + 384 x + 29$$4$$2$$6$$C_4\times C_2$$$[\ ]_{4}^{2}$$
\(29\) Copy content Toggle raw display 29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$
29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$
29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$
29.1.4.3a1.3$x^{4} + 116$$4$$1$$3$$C_4$$$[\ ]_{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)