Normalized defining polynomial
\( x^{16} - 4 x^{15} - 23 x^{14} + 98 x^{13} + 246 x^{12} - 1492 x^{11} + 537 x^{10} + 7567 x^{9} - 13310 x^{8} - 1665 x^{7} + 62333 x^{6} - 30189 x^{5} + 55705 x^{4} + 235277 x^{3} + 226780 x^{2} + 67135 x + 58841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8243206936713178643875538610721=13^{12}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{214} a^{11} + \frac{31}{214} a^{10} - \frac{21}{107} a^{9} + \frac{15}{107} a^{8} - \frac{59}{214} a^{7} + \frac{95}{214} a^{6} - \frac{43}{214} a^{5} - \frac{7}{107} a^{4} + \frac{46}{107} a^{3} + \frac{81}{214} a^{2} - \frac{23}{107} a - \frac{53}{107}$, $\frac{1}{187892} a^{12} - \frac{3}{187892} a^{11} + \frac{25547}{187892} a^{10} + \frac{495}{187892} a^{9} - \frac{5486}{46973} a^{8} - \frac{467}{187892} a^{7} + \frac{35225}{93946} a^{6} - \frac{39961}{187892} a^{5} + \frac{13945}{46973} a^{4} + \frac{40395}{187892} a^{3} - \frac{29015}{187892} a^{2} + \frac{5233}{46973} a + \frac{54001}{187892}$, $\frac{1}{187892} a^{13} + \frac{19}{46973} a^{11} + \frac{19691}{93946} a^{10} + \frac{15539}{187892} a^{9} + \frac{15355}{187892} a^{8} + \frac{68171}{187892} a^{7} + \frac{7203}{187892} a^{6} - \frac{2643}{187892} a^{5} - \frac{93419}{187892} a^{4} - \frac{22394}{46973} a^{3} - \frac{61723}{187892} a^{2} - \frac{27195}{187892} a - \frac{51351}{187892}$, $\frac{1}{187892} a^{14} + \frac{25}{46973} a^{11} + \frac{43321}{187892} a^{10} + \frac{40073}{187892} a^{9} - \frac{13061}{187892} a^{8} - \frac{68811}{187892} a^{7} - \frac{91477}{187892} a^{6} + \frac{39193}{187892} a^{5} - \frac{4469}{46973} a^{4} + \frac{91395}{187892} a^{3} + \frac{11041}{187892} a^{2} + \frac{81331}{187892} a + \frac{20996}{46973}$, $\frac{1}{898475858278298229509516} a^{15} - \frac{437842322051491383}{224618964569574557377379} a^{14} + \frac{301097766959295809}{898475858278298229509516} a^{13} + \frac{1161943397582461709}{898475858278298229509516} a^{12} + \frac{59230506947847117809}{449237929139149114754758} a^{11} - \frac{55287801168186627136513}{449237929139149114754758} a^{10} + \frac{9852131711567395658023}{898475858278298229509516} a^{9} - \frac{18610268156461832248238}{224618964569574557377379} a^{8} + \frac{322021190944133432739911}{898475858278298229509516} a^{7} + \frac{31231255002870947761389}{449237929139149114754758} a^{6} - \frac{143774650833095696779673}{449237929139149114754758} a^{5} + \frac{72809421594111953072666}{224618964569574557377379} a^{4} - \frac{91223597500882117170915}{449237929139149114754758} a^{3} - \frac{382975842475772387294621}{898475858278298229509516} a^{2} + \frac{62197362177657049978031}{898475858278298229509516} a - \frac{115690758258603403812037}{449237929139149114754758}$
Class group and class number
$C_{12}\times C_{12}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2985208.11128 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |