Normalized defining polynomial
\( x^{16} - 8 x^{15} + 60 x^{14} - 280 x^{13} + 1364 x^{12} - 4908 x^{11} + 18698 x^{10} - 54220 x^{9} + 170261 x^{8} - 399988 x^{7} + 1060918 x^{6} - 1966724 x^{5} + 4429644 x^{4} - 5961476 x^{3} + 11232934 x^{2} - 8526276 x + 12941281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(82115019702009856000000000000=2^{32}\cdot 5^{12}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(920=2^{3}\cdot 5\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{920}(1,·)$, $\chi_{920}(323,·)$, $\chi_{920}(321,·)$, $\chi_{920}(781,·)$, $\chi_{920}(783,·)$, $\chi_{920}(643,·)$, $\chi_{920}(461,·)$, $\chi_{920}(367,·)$, $\chi_{920}(507,·)$, $\chi_{920}(229,·)$, $\chi_{920}(689,·)$, $\chi_{920}(47,·)$, $\chi_{920}(369,·)$, $\chi_{920}(183,·)$, $\chi_{920}(827,·)$, $\chi_{920}(829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{38} a^{12} - \frac{3}{19} a^{11} + \frac{2}{19} a^{10} - \frac{3}{38} a^{9} + \frac{3}{19} a^{8} + \frac{2}{19} a^{7} - \frac{4}{19} a^{6} - \frac{5}{38} a^{5} - \frac{7}{19} a^{4} + \frac{7}{19} a^{3} - \frac{1}{19} a^{2} + \frac{9}{38} a - \frac{3}{38}$, $\frac{1}{1558} a^{13} + \frac{7}{779} a^{12} - \frac{363}{1558} a^{11} + \frac{305}{1558} a^{10} + \frac{106}{779} a^{9} - \frac{161}{1558} a^{8} + \frac{357}{1558} a^{7} + \frac{215}{1558} a^{6} - \frac{1}{2} a^{4} - \frac{425}{1558} a^{3} + \frac{577}{1558} a^{2} - \frac{773}{1558} a - \frac{1}{38}$, $\frac{1}{876006318477422} a^{14} - \frac{7}{876006318477422} a^{13} + \frac{701641793255}{79636938043402} a^{12} - \frac{46308358354739}{876006318477422} a^{11} - \frac{101568010452462}{438003159238711} a^{10} + \frac{126163911726761}{876006318477422} a^{9} + \frac{17860967219725}{79636938043402} a^{8} - \frac{300245332975465}{876006318477422} a^{7} - \frac{179134126042325}{438003159238711} a^{6} - \frac{1860477696199}{21366007767742} a^{5} + \frac{257356362704103}{876006318477422} a^{4} - \frac{76881674407189}{876006318477422} a^{3} + \frac{12868428929755}{46105595709338} a^{2} - \frac{104546529103284}{438003159238711} a - \frac{2259374549332}{10683003883871}$, $\frac{1}{18116686672431564382} a^{15} + \frac{10333}{18116686672431564382} a^{14} - \frac{56105532167598}{823485757837798381} a^{13} - \frac{150545768522022057}{18116686672431564382} a^{12} + \frac{1920343560003767275}{18116686672431564382} a^{11} - \frac{1971118697762098348}{9058343336215782191} a^{10} - \frac{403362391977522421}{1646971515675596762} a^{9} - \frac{53882024322042250}{476754912432409589} a^{8} - \frac{6779198933086549855}{18116686672431564382} a^{7} - \frac{3721426375739699378}{9058343336215782191} a^{6} - \frac{1050168919410102445}{18116686672431564382} a^{5} - \frac{631656461456070354}{9058343336215782191} a^{4} - \frac{4215934739325212881}{9058343336215782191} a^{3} - \frac{122099372527481999}{953509824864819178} a^{2} - \frac{2481494925753109393}{18116686672431564382} a - \frac{230252429046355}{40170036967697482}$
Class group and class number
$C_{3}\times C_{30}\times C_{120}$, which has order $10800$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.135357253273 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.3 | $x^{8} + 2 x^{6} + 6 x^{4} + 4 x^{2} + 8 x + 28$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $23$ | 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |