Normalized defining polynomial
\( x^{16} - 8 x^{15} + 68 x^{14} - 308 x^{13} + 1366 x^{12} - 4000 x^{11} + 11742 x^{10} - 22360 x^{9} + 46707 x^{8} - 46980 x^{7} + 78102 x^{6} + 19260 x^{5} + 57936 x^{4} + 167908 x^{3} + 141578 x^{2} + 99788 x + 251761 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(819501922779136000000000000=2^{36}\cdot 5^{12}\cdot 29^{2}\cdot 241^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{41} a^{14} + \frac{6}{41} a^{13} + \frac{17}{41} a^{12} - \frac{19}{41} a^{11} - \frac{6}{41} a^{10} - \frac{2}{41} a^{9} + \frac{19}{41} a^{8} - \frac{12}{41} a^{7} - \frac{19}{41} a^{6} + \frac{7}{41} a^{5} - \frac{5}{41} a^{4} - \frac{19}{41} a^{2} - \frac{7}{41} a + \frac{12}{41}$, $\frac{1}{4115425511730528812042106297762400921} a^{15} + \frac{7496676514027455975867372359735335}{4115425511730528812042106297762400921} a^{14} - \frac{585372743501812151234288221554631701}{4115425511730528812042106297762400921} a^{13} + \frac{1525175891053849720016423139798065658}{4115425511730528812042106297762400921} a^{12} - \frac{267742353433259385293765367282466765}{4115425511730528812042106297762400921} a^{11} + \frac{202661105807560293839132260991279459}{4115425511730528812042106297762400921} a^{10} - \frac{1795530935736641218076994720898581720}{4115425511730528812042106297762400921} a^{9} + \frac{1849037822434718183081207657182383793}{4115425511730528812042106297762400921} a^{8} - \frac{1715555879965539420855740207529361978}{4115425511730528812042106297762400921} a^{7} + \frac{2055640952585910949810471098026917963}{4115425511730528812042106297762400921} a^{6} + \frac{159912214039626528894090586171398269}{4115425511730528812042106297762400921} a^{5} - \frac{1361960457209123431460404768246273515}{4115425511730528812042106297762400921} a^{4} - \frac{1635081571447916388662100381418577596}{4115425511730528812042106297762400921} a^{3} - \frac{890521496054182719051139396013723103}{4115425511730528812042106297762400921} a^{2} + \frac{1817230326985518748900378611326664426}{4115425511730528812042106297762400921} a - \frac{1191218163801506931302731184232201805}{4115425511730528812042106297762400921}$
Class group and class number
$C_{2}\times C_{2}\times C_{190}$, which has order $760$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n797 are not computed |
| Character table for t16n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 241 | Data not computed | ||||||