Normalized defining polynomial
\( x^{16} - x^{15} + 52 x^{14} - 53 x^{13} + 1450 x^{12} + 13 x^{11} + 29552 x^{10} + 21851 x^{9} + 408181 x^{8} + 430260 x^{7} + 3953115 x^{6} + 4439000 x^{5} + 25816210 x^{4} + 24663705 x^{3} + 100016220 x^{2} + 58427950 x + 173852905 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81925410828566900634765625=5^{14}\cdot 41^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{21} a^{14} + \frac{10}{21} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{21} a^{10} + \frac{10}{21} a^{9} + \frac{2}{21} a^{8} - \frac{5}{21} a^{7} - \frac{4}{21} a^{6} + \frac{8}{21} a^{5} + \frac{2}{7} a^{4} + \frac{1}{21} a^{3} - \frac{3}{7} a^{2} + \frac{1}{21} a + \frac{2}{21}$, $\frac{1}{353754261804557764683811036001942120350440145978316511} a^{15} + \frac{7069422758651308042155047330312977188587347797223651}{353754261804557764683811036001942120350440145978316511} a^{14} - \frac{75457347905231258174237468055837656229404923651533815}{353754261804557764683811036001942120350440145978316511} a^{13} - \frac{382714217877901007452435092441157372752936758097748}{4594211192266983956932610857168079485070651246471643} a^{12} + \frac{60730010214133343181738999600713680022901175481615749}{353754261804557764683811036001942120350440145978316511} a^{11} + \frac{156345700086142679164328996823093056051957657472209422}{353754261804557764683811036001942120350440145978316511} a^{10} - \frac{88333060913326893304573272415168077153018898993562047}{353754261804557764683811036001942120350440145978316511} a^{9} - \frac{25343564387008541103438951733047086455504072525116491}{353754261804557764683811036001942120350440145978316511} a^{8} - \frac{2968039353080845748443869601567690467342040897642063}{353754261804557764683811036001942120350440145978316511} a^{7} + \frac{9611717823659999822790169429342396770629237436713273}{353754261804557764683811036001942120350440145978316511} a^{6} + \frac{46765123818038012813657727391298407502586996683491215}{117918087268185921561270345333980706783480048659438837} a^{5} - \frac{5132218603892347803451300389716484123356702988511804}{32159478345868887698528276000176556395494558725301501} a^{4} - \frac{49833543187446107567386554519768511303900879809460221}{117918087268185921561270345333980706783480048659438837} a^{3} - \frac{17293031502080157184604440569312610937509834834539932}{353754261804557764683811036001942120350440145978316511} a^{2} + \frac{23158000838371614221431729058234864656357613388966782}{353754261804557764683811036001942120350440145978316511} a - \frac{45967819517141947639521629838205337513375539583108252}{117918087268185921561270345333980706783480048659438837}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2390187378161257230721652269441593004136}{20362077513829080949136576924869019188843324521} a^{15} - \frac{10915677070151978890860629835774065813089}{20362077513829080949136576924869019188843324521} a^{14} + \frac{143979842107559617818227089458096797849909}{20362077513829080949136576924869019188843324521} a^{13} - \frac{73492254296925227691554769220123708316002}{2908868216261297278448082417838431312691903503} a^{12} + \frac{4103429551636212105740593819808398555987067}{20362077513829080949136576924869019188843324521} a^{11} - \frac{8916877206592538401753021651368821419088539}{20362077513829080949136576924869019188843324521} a^{10} + \frac{68342324595695569973258528427973540701846964}{20362077513829080949136576924869019188843324521} a^{9} - \frac{12215095383885761729807235968705801691824065}{2908868216261297278448082417838431312691903503} a^{8} + \frac{770923906869181389665772194692262733482979514}{20362077513829080949136576924869019188843324521} a^{7} - \frac{436400561655368565008698746120704710390740527}{20362077513829080949136576924869019188843324521} a^{6} + \frac{1970300330972500421156189799634401229620552906}{6787359171276360316378858974956339729614441507} a^{5} - \frac{517017974569416029815168543806793192542119101}{20362077513829080949136576924869019188843324521} a^{4} + \frac{9824031772702074569749651890685654491659523401}{6787359171276360316378858974956339729614441507} a^{3} + \frac{4637256044562908247553772856214123900164572972}{20362077513829080949136576924869019188843324521} a^{2} + \frac{77020486465002392904827586449600817451620482470}{20362077513829080949136576924869019188843324521} a + \frac{7652173195621244863259225182130133332003431958}{6787359171276360316378858974956339729614441507} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1132490.59957 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.5125.1, 4.0.1025.1, 8.4.9051265703125.2, 8.4.9051265703125.1, 8.0.26265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 41.4.2.2 | $x^{4} - 41 x^{2} + 20172$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |