Properties

Label 16.0.818...809.6
Degree $16$
Signature $[0, 8]$
Discriminant $8.186\times 10^{26}$
Root discriminant \(48.09\)
Ramified primes $17,67$
Class number $4$ (GRH)
Class group [4] (GRH)
Galois group $C_2^3:C_4$ (as 16T33)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^14 - x^13 + 54*x^12 + 210*x^11 + 209*x^10 - 589*x^9 - 630*x^8 + 1721*x^7 + 4011*x^6 + 14085*x^5 + 52958*x^4 + 81624*x^3 + 79362*x^2 + 77319*x + 77291)
 
gp: K = bnfinit(y^16 - 8*y^14 - y^13 + 54*y^12 + 210*y^11 + 209*y^10 - 589*y^9 - 630*y^8 + 1721*y^7 + 4011*y^6 + 14085*y^5 + 52958*y^4 + 81624*y^3 + 79362*y^2 + 77319*y + 77291, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 8*x^14 - x^13 + 54*x^12 + 210*x^11 + 209*x^10 - 589*x^9 - 630*x^8 + 1721*x^7 + 4011*x^6 + 14085*x^5 + 52958*x^4 + 81624*x^3 + 79362*x^2 + 77319*x + 77291);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^14 - x^13 + 54*x^12 + 210*x^11 + 209*x^10 - 589*x^9 - 630*x^8 + 1721*x^7 + 4011*x^6 + 14085*x^5 + 52958*x^4 + 81624*x^3 + 79362*x^2 + 77319*x + 77291)
 

\( x^{16} - 8 x^{14} - x^{13} + 54 x^{12} + 210 x^{11} + 209 x^{10} - 589 x^{9} - 630 x^{8} + 1721 x^{7} + \cdots + 77291 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(818629961123679547712831809\) \(\medspace = 17^{10}\cdot 67^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(48.09\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $17^{3/4}67^{1/2}\approx 68.52895233095656$
Ramified primes:   \(17\), \(67\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{11}-\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{76}a^{13}-\frac{9}{76}a^{12}+\frac{7}{38}a^{11}-\frac{13}{76}a^{10}+\frac{1}{76}a^{9}-\frac{25}{76}a^{8}-\frac{9}{38}a^{7}+\frac{1}{19}a^{6}-\frac{7}{19}a^{5}+\frac{7}{19}a^{4}-\frac{1}{4}a^{3}+\frac{9}{19}a^{2}-\frac{25}{76}a+\frac{5}{19}$, $\frac{1}{4078692}a^{14}+\frac{6167}{2039346}a^{13}-\frac{27361}{226594}a^{12}-\frac{47281}{679782}a^{11}+\frac{151895}{679782}a^{10}-\frac{179125}{453188}a^{9}-\frac{399925}{1019673}a^{8}-\frac{1038125}{4078692}a^{7}-\frac{273413}{679782}a^{6}+\frac{179011}{679782}a^{5}+\frac{220963}{453188}a^{4}+\frac{96665}{1359564}a^{3}-\frac{45313}{1019673}a^{2}-\frac{258205}{4078692}a+\frac{1259731}{4078692}$, $\frac{1}{13\!\cdots\!36}a^{15}-\frac{45\!\cdots\!79}{45\!\cdots\!12}a^{14}+\frac{52\!\cdots\!67}{13\!\cdots\!36}a^{13}+\frac{48\!\cdots\!91}{11\!\cdots\!03}a^{12}-\frac{18\!\cdots\!99}{15\!\cdots\!04}a^{11}-\frac{19\!\cdots\!64}{11\!\cdots\!03}a^{10}+\frac{66\!\cdots\!01}{13\!\cdots\!36}a^{9}-\frac{29\!\cdots\!77}{13\!\cdots\!36}a^{8}+\frac{60\!\cdots\!33}{33\!\cdots\!09}a^{7}-\frac{12\!\cdots\!14}{37\!\cdots\!01}a^{6}+\frac{16\!\cdots\!13}{45\!\cdots\!12}a^{5}-\frac{84\!\cdots\!33}{22\!\cdots\!06}a^{4}-\frac{57\!\cdots\!82}{33\!\cdots\!09}a^{3}+\frac{13\!\cdots\!07}{11\!\cdots\!03}a^{2}+\frac{51\!\cdots\!09}{13\!\cdots\!36}a-\frac{11\!\cdots\!14}{33\!\cdots\!09}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{21\!\cdots\!55}{15\!\cdots\!04}a^{15}-\frac{21\!\cdots\!71}{75\!\cdots\!02}a^{14}-\frac{12\!\cdots\!97}{15\!\cdots\!04}a^{13}+\frac{74\!\cdots\!14}{37\!\cdots\!01}a^{12}+\frac{76\!\cdots\!97}{15\!\cdots\!04}a^{11}+\frac{67\!\cdots\!80}{37\!\cdots\!01}a^{10}-\frac{83\!\cdots\!91}{75\!\cdots\!02}a^{9}-\frac{14\!\cdots\!75}{15\!\cdots\!04}a^{8}+\frac{17\!\cdots\!61}{15\!\cdots\!04}a^{7}+\frac{64\!\cdots\!19}{37\!\cdots\!01}a^{6}+\frac{18\!\cdots\!31}{15\!\cdots\!04}a^{5}+\frac{24\!\cdots\!75}{15\!\cdots\!04}a^{4}+\frac{58\!\cdots\!37}{15\!\cdots\!04}a^{3}+\frac{12\!\cdots\!47}{75\!\cdots\!02}a^{2}+\frac{31\!\cdots\!01}{75\!\cdots\!02}a+\frac{44\!\cdots\!15}{15\!\cdots\!04}$, $\frac{35\!\cdots\!17}{13\!\cdots\!36}a^{15}-\frac{36\!\cdots\!85}{13\!\cdots\!36}a^{14}+\frac{71\!\cdots\!35}{67\!\cdots\!18}a^{13}+\frac{24\!\cdots\!62}{11\!\cdots\!03}a^{12}+\frac{92\!\cdots\!19}{22\!\cdots\!06}a^{11}-\frac{52\!\cdots\!33}{45\!\cdots\!12}a^{10}-\frac{49\!\cdots\!89}{13\!\cdots\!36}a^{9}-\frac{10\!\cdots\!11}{15\!\cdots\!04}a^{8}+\frac{42\!\cdots\!55}{13\!\cdots\!36}a^{7}+\frac{27\!\cdots\!98}{11\!\cdots\!03}a^{6}-\frac{31\!\cdots\!99}{45\!\cdots\!12}a^{5}-\frac{13\!\cdots\!76}{11\!\cdots\!03}a^{4}+\frac{11\!\cdots\!25}{13\!\cdots\!36}a^{3}-\frac{74\!\cdots\!21}{13\!\cdots\!36}a^{2}+\frac{22\!\cdots\!29}{22\!\cdots\!06}a+\frac{17\!\cdots\!83}{13\!\cdots\!36}$, $\frac{98\!\cdots\!31}{37\!\cdots\!81}a^{15}-\frac{11\!\cdots\!57}{11\!\cdots\!03}a^{14}-\frac{93\!\cdots\!34}{33\!\cdots\!09}a^{13}+\frac{69\!\cdots\!39}{11\!\cdots\!03}a^{12}+\frac{13\!\cdots\!59}{75\!\cdots\!02}a^{11}+\frac{54\!\cdots\!84}{11\!\cdots\!03}a^{10}+\frac{13\!\cdots\!91}{67\!\cdots\!18}a^{9}-\frac{85\!\cdots\!85}{33\!\cdots\!09}a^{8}-\frac{48\!\cdots\!26}{33\!\cdots\!09}a^{7}+\frac{55\!\cdots\!79}{75\!\cdots\!02}a^{6}+\frac{17\!\cdots\!91}{22\!\cdots\!06}a^{5}+\frac{24\!\cdots\!86}{11\!\cdots\!03}a^{4}+\frac{95\!\cdots\!27}{67\!\cdots\!18}a^{3}+\frac{32\!\cdots\!31}{22\!\cdots\!06}a^{2}-\frac{81\!\cdots\!07}{67\!\cdots\!18}a-\frac{92\!\cdots\!50}{33\!\cdots\!09}$, $\frac{11\!\cdots\!33}{35\!\cdots\!22}a^{15}-\frac{59\!\cdots\!23}{71\!\cdots\!44}a^{14}+\frac{76\!\cdots\!73}{35\!\cdots\!22}a^{13}+\frac{19\!\cdots\!17}{11\!\cdots\!74}a^{12}-\frac{53\!\cdots\!57}{59\!\cdots\!37}a^{11}-\frac{55\!\cdots\!77}{59\!\cdots\!37}a^{10}-\frac{66\!\cdots\!87}{71\!\cdots\!44}a^{9}+\frac{14\!\cdots\!77}{11\!\cdots\!74}a^{8}+\frac{24\!\cdots\!51}{71\!\cdots\!44}a^{7}-\frac{54\!\cdots\!05}{59\!\cdots\!37}a^{6}+\frac{66\!\cdots\!77}{11\!\cdots\!74}a^{5}-\frac{31\!\cdots\!37}{23\!\cdots\!48}a^{4}-\frac{47\!\cdots\!83}{71\!\cdots\!44}a^{3}-\frac{20\!\cdots\!09}{17\!\cdots\!11}a^{2}-\frac{40\!\cdots\!75}{23\!\cdots\!48}a-\frac{62\!\cdots\!59}{37\!\cdots\!76}$, $\frac{18\!\cdots\!03}{50\!\cdots\!27}a^{15}-\frac{25\!\cdots\!27}{13\!\cdots\!36}a^{14}+\frac{82\!\cdots\!35}{75\!\cdots\!02}a^{13}+\frac{19\!\cdots\!51}{22\!\cdots\!06}a^{12}-\frac{42\!\cdots\!72}{11\!\cdots\!03}a^{11}+\frac{59\!\cdots\!08}{37\!\cdots\!01}a^{10}-\frac{21\!\cdots\!67}{13\!\cdots\!36}a^{9}-\frac{39\!\cdots\!67}{67\!\cdots\!18}a^{8}+\frac{36\!\cdots\!49}{45\!\cdots\!12}a^{7}-\frac{76\!\cdots\!45}{11\!\cdots\!03}a^{6}-\frac{28\!\cdots\!95}{75\!\cdots\!02}a^{5}+\frac{18\!\cdots\!11}{45\!\cdots\!12}a^{4}-\frac{27\!\cdots\!63}{13\!\cdots\!36}a^{3}-\frac{63\!\cdots\!40}{33\!\cdots\!09}a^{2}+\frac{18\!\cdots\!07}{13\!\cdots\!36}a-\frac{38\!\cdots\!79}{15\!\cdots\!04}$, $\frac{93\!\cdots\!37}{22\!\cdots\!06}a^{15}-\frac{25\!\cdots\!97}{37\!\cdots\!01}a^{14}-\frac{77\!\cdots\!81}{22\!\cdots\!06}a^{13}+\frac{54\!\cdots\!95}{75\!\cdots\!02}a^{12}+\frac{16\!\cdots\!53}{75\!\cdots\!02}a^{11}+\frac{19\!\cdots\!24}{37\!\cdots\!01}a^{10}-\frac{50\!\cdots\!41}{11\!\cdots\!03}a^{9}-\frac{43\!\cdots\!29}{11\!\cdots\!03}a^{8}+\frac{54\!\cdots\!58}{11\!\cdots\!03}a^{7}+\frac{13\!\cdots\!87}{75\!\cdots\!02}a^{6}+\frac{93\!\cdots\!65}{37\!\cdots\!01}a^{5}+\frac{73\!\cdots\!29}{75\!\cdots\!02}a^{4}+\frac{23\!\cdots\!67}{11\!\cdots\!03}a^{3}+\frac{61\!\cdots\!22}{37\!\cdots\!01}a^{2}+\frac{11\!\cdots\!71}{22\!\cdots\!06}a+\frac{86\!\cdots\!51}{11\!\cdots\!03}$, $\frac{11\!\cdots\!03}{33\!\cdots\!09}a^{15}-\frac{12\!\cdots\!84}{33\!\cdots\!09}a^{14}-\frac{22\!\cdots\!51}{67\!\cdots\!18}a^{13}+\frac{54\!\cdots\!87}{22\!\cdots\!06}a^{12}+\frac{27\!\cdots\!10}{11\!\cdots\!03}a^{11}+\frac{64\!\cdots\!90}{11\!\cdots\!03}a^{10}-\frac{38\!\cdots\!41}{67\!\cdots\!18}a^{9}-\frac{18\!\cdots\!24}{37\!\cdots\!01}a^{8}-\frac{36\!\cdots\!52}{33\!\cdots\!09}a^{7}+\frac{22\!\cdots\!36}{11\!\cdots\!03}a^{6}+\frac{61\!\cdots\!99}{22\!\cdots\!06}a^{5}+\frac{43\!\cdots\!99}{22\!\cdots\!06}a^{4}+\frac{17\!\cdots\!91}{67\!\cdots\!18}a^{3}-\frac{10\!\cdots\!31}{67\!\cdots\!18}a^{2}-\frac{54\!\cdots\!86}{11\!\cdots\!03}a-\frac{36\!\cdots\!39}{67\!\cdots\!18}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2782055.44714 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 2782055.44714 \cdot 4}{2\cdot\sqrt{818629961123679547712831809}}\cr\approx \mathstrut & 0.472379352127 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^14 - x^13 + 54*x^12 + 210*x^11 + 209*x^10 - 589*x^9 - 630*x^8 + 1721*x^7 + 4011*x^6 + 14085*x^5 + 52958*x^4 + 81624*x^3 + 79362*x^2 + 77319*x + 77291)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 8*x^14 - x^13 + 54*x^12 + 210*x^11 + 209*x^10 - 589*x^9 - 630*x^8 + 1721*x^7 + 4011*x^6 + 14085*x^5 + 52958*x^4 + 81624*x^3 + 79362*x^2 + 77319*x + 77291, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 8*x^14 - x^13 + 54*x^12 + 210*x^11 + 209*x^10 - 589*x^9 - 630*x^8 + 1721*x^7 + 4011*x^6 + 14085*x^5 + 52958*x^4 + 81624*x^3 + 79362*x^2 + 77319*x + 77291);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 8*x^14 - x^13 + 54*x^12 + 210*x^11 + 209*x^10 - 589*x^9 - 630*x^8 + 1721*x^7 + 4011*x^6 + 14085*x^5 + 52958*x^4 + 81624*x^3 + 79362*x^2 + 77319*x + 77291);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3:C_4$ (as 16T33):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3:C_4$
Character table for $C_2^3:C_4$

Intermediate fields

\(\Q(\sqrt{-1139}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-67}) \), 4.0.76313.1 x2, \(\Q(\sqrt{17}, \sqrt{-67})\), 4.2.19363.1 x2, 8.0.1683041777041.1 x2, 8.0.28611710209697.2 x2, 8.0.1683041777041.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 32
Degree 8 siblings: 8.4.108353547241.2, 8.0.28611710209697.2, 8.0.486399073564849.1, 8.0.1683041777041.1
Degree 16 siblings: 16.4.52703064995487500398531609.2, 16.0.236584058764743389289008392801.11, 16.0.236584058764743389289008392801.13
Minimal sibling: 8.0.1683041777041.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{4}$ ${\href{/padicField/3.4.0.1}{4} }^{4}$ ${\href{/padicField/5.4.0.1}{4} }^{4}$ ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.4.0.1}{4} }^{4}$ ${\href{/padicField/13.2.0.1}{2} }^{8}$ R ${\href{/padicField/19.2.0.1}{2} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ ${\href{/padicField/31.4.0.1}{4} }^{4}$ ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ ${\href{/padicField/41.4.0.1}{4} }^{4}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.2.0.1}{2} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(17\) Copy content Toggle raw display 17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} + 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.4.3.1$x^{4} + 17$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.3.1$x^{4} + 17$$4$$1$$3$$C_4$$[\ ]_{4}$
\(67\) Copy content Toggle raw display 67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 67$$2$$1$$1$$C_2$$[\ ]_{2}$