Normalized defining polynomial
\( x^{16} + 80 x^{14} + 2516 x^{12} + 39920 x^{10} + 340044 x^{8} + 1515360 x^{6} + 3171760 x^{4} + 2689600 x^{2} + 672400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(816061694707436093440000000000=2^{44}\cdot 5^{10}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{16} a^{8} - \frac{1}{4} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4}$, $\frac{1}{16} a^{9} - \frac{1}{4} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a$, $\frac{1}{48} a^{10} - \frac{1}{48} a^{8} + \frac{1}{24} a^{6} + \frac{5}{24} a^{4} - \frac{5}{12} a^{2} + \frac{1}{12}$, $\frac{1}{48} a^{11} - \frac{1}{48} a^{9} + \frac{1}{24} a^{7} + \frac{5}{24} a^{5} - \frac{5}{12} a^{3} + \frac{1}{12} a$, $\frac{1}{413280} a^{12} - \frac{11}{13776} a^{10} + \frac{53}{12915} a^{8} - \frac{47}{2296} a^{6} - \frac{647}{51660} a^{4} - \frac{5}{252} a^{2} - \frac{37}{252}$, $\frac{1}{413280} a^{13} - \frac{11}{13776} a^{11} + \frac{53}{12915} a^{9} - \frac{47}{2296} a^{7} - \frac{647}{51660} a^{5} - \frac{5}{252} a^{3} - \frac{37}{252} a$, $\frac{1}{26102351520} a^{14} + \frac{311}{3262793940} a^{12} - \frac{1541677}{815698485} a^{10} + \frac{152298217}{6525587880} a^{8} - \frac{66819527}{3262793940} a^{6} - \frac{430318141}{3262793940} a^{4} - \frac{1915919}{5305356} a^{2} + \frac{2243587}{7958034}$, $\frac{1}{26102351520} a^{15} + \frac{311}{3262793940} a^{13} - \frac{1541677}{815698485} a^{11} + \frac{152298217}{6525587880} a^{9} - \frac{66819527}{3262793940} a^{7} - \frac{430318141}{3262793940} a^{5} - \frac{1915919}{5305356} a^{3} + \frac{2243587}{7958034} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{1458}$, which has order $11664$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19190.6159055 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 41 conjugacy class representatives for t16n869 |
| Character table for t16n869 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), 4.4.65600.2, 4.4.2624.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.8.4303360000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.64 | $x^{8} + 4 x^{6} + 6 x^{4} + 28$ | $4$ | $2$ | $22$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 4]^{2}$ |
| 2.8.22.63 | $x^{8} + 2 x^{4} + 8 x^{2} + 60$ | $4$ | $2$ | $22$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 4]^{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $41$ | 41.4.3.4 | $x^{4} + 8856$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |