Properties

Label 16.0.81605794742...1713.4
Degree $16$
Signature $[0, 8]$
Discriminant $17^{11}\cdot 47^{8}$
Root discriminant $48.08$
Ramified primes $17, 47$
Class number $20$ (GRH)
Class group $[2, 10]$ (GRH)
Galois group $C_4.D_4:C_4$ (as 16T289)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![44357, -70561, -20704, 63306, 1535, -17180, -3230, 641, 424, 1019, 465, -82, 35, -29, 8, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 8*x^14 - 29*x^13 + 35*x^12 - 82*x^11 + 465*x^10 + 1019*x^9 + 424*x^8 + 641*x^7 - 3230*x^6 - 17180*x^5 + 1535*x^4 + 63306*x^3 - 20704*x^2 - 70561*x + 44357)
 
gp: K = bnfinit(x^16 - 4*x^15 + 8*x^14 - 29*x^13 + 35*x^12 - 82*x^11 + 465*x^10 + 1019*x^9 + 424*x^8 + 641*x^7 - 3230*x^6 - 17180*x^5 + 1535*x^4 + 63306*x^3 - 20704*x^2 - 70561*x + 44357, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 8 x^{14} - 29 x^{13} + 35 x^{12} - 82 x^{11} + 465 x^{10} + 1019 x^{9} + 424 x^{8} + 641 x^{7} - 3230 x^{6} - 17180 x^{5} + 1535 x^{4} + 63306 x^{3} - 20704 x^{2} - 70561 x + 44357 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(816057947423197718473521713=17^{11}\cdot 47^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $48.08$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{2}{9} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{2}{9} a^{7} + \frac{1}{3} a^{6} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{801981641993136582611226323204613} a^{15} - \frac{412625067113656500216793207067}{801981641993136582611226323204613} a^{14} + \frac{4678138430748227872020082506268}{89109071332570731401247369244957} a^{13} - \frac{25626003159234439314672492769961}{801981641993136582611226323204613} a^{12} + \frac{337177749000872904053667210122545}{801981641993136582611226323204613} a^{11} - \frac{1708019607201124027050366508387}{89109071332570731401247369244957} a^{10} - \frac{54461172419488565552637627555307}{267327213997712194203742107734871} a^{9} - \frac{356144451773509839652171509585946}{801981641993136582611226323204613} a^{8} + \frac{84435229044416256432517067839907}{801981641993136582611226323204613} a^{7} + \frac{355630778833061246774284470337090}{801981641993136582611226323204613} a^{6} - \frac{71106837660988819539956028140485}{267327213997712194203742107734871} a^{5} + \frac{113345748160517155963177324590571}{267327213997712194203742107734871} a^{4} + \frac{6339814784929673868946573812524}{89109071332570731401247369244957} a^{3} + \frac{165706748234168152076961852680168}{801981641993136582611226323204613} a^{2} + \frac{29518375021559986705080303159778}{801981641993136582611226323204613} a + \frac{260723815783181125129209417827620}{801981641993136582611226323204613}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 317036.881563 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4.D_4:C_4$ (as 16T289):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 44 conjugacy class representatives for $C_4.D_4:C_4$
Character table for $C_4.D_4:C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-47}) \), 4.0.37553.1, 8.0.23973872753.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ $16$ ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ $16$ $16$ $16$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ $16$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$17$17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$
$47$47.8.4.1$x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
47.8.4.1$x^{8} + 172302 x^{4} - 103823 x^{2} + 7421994801$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$