Normalized defining polynomial
\( x^{16} - x^{15} - 6 x^{14} + 4 x^{13} + 15 x^{12} - 6 x^{11} - 20 x^{10} + 7 x^{9} + 21 x^{8} - 7 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(8148125331379089\)
\(\medspace = 3^{12}\cdot 7^{6}\cdot 19^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.87\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{3/4}7^{3/4}19^{1/2}\approx 42.76035198975074$ | ||
Ramified primes: |
\(3\), \(7\), \(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7}a^{14}+\frac{2}{7}a^{13}+\frac{1}{7}a^{12}+\frac{2}{7}a^{11}+\frac{1}{7}a^{10}-\frac{1}{7}a^{9}-\frac{1}{7}a^{8}+\frac{3}{7}a^{7}+\frac{1}{7}a^{6}-\frac{1}{7}a^{5}-\frac{1}{7}a^{4}+\frac{2}{7}a^{3}-\frac{1}{7}a^{2}+\frac{2}{7}a-\frac{1}{7}$, $\frac{1}{259}a^{15}-\frac{1}{37}a^{14}-\frac{38}{259}a^{13}+\frac{12}{37}a^{12}-\frac{45}{259}a^{11}+\frac{116}{259}a^{10}-\frac{13}{259}a^{9}-\frac{100}{259}a^{8}-\frac{82}{259}a^{7}+\frac{4}{259}a^{6}-\frac{118}{259}a^{5}+\frac{11}{259}a^{4}+\frac{23}{259}a^{3}-\frac{31}{259}a^{2}-\frac{5}{259}a-\frac{117}{259}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{1}{7} a^{15} + \frac{19}{7} a^{14} - \frac{8}{7} a^{13} - \frac{107}{7} a^{12} + \frac{27}{7} a^{11} + \frac{239}{7} a^{10} - \frac{13}{7} a^{9} - \frac{269}{7} a^{8} + \frac{27}{7} a^{7} + \frac{274}{7} a^{6} - \frac{27}{7} a^{5} - \frac{254}{7} a^{4} + \frac{15}{7} a^{3} + \frac{166}{7} a^{2} - \frac{13}{7} a - 5 \)
(order $6$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{198}{259}a^{15}-\frac{239}{259}a^{14}-\frac{1086}{259}a^{13}+\frac{944}{259}a^{12}+\frac{2449}{259}a^{11}-\frac{181}{37}a^{10}-\frac{2944}{259}a^{9}+\frac{1068}{259}a^{8}+\frac{3004}{259}a^{7}-\frac{130}{37}a^{6}-\frac{2755}{259}a^{5}+\frac{772}{259}a^{4}+\frac{1927}{259}a^{3}-\frac{292}{259}a^{2}-\frac{509}{259}a-\frac{226}{259}$, $\frac{880}{259}a^{15}-\frac{1054}{259}a^{14}-\frac{4839}{259}a^{13}+\frac{4175}{259}a^{12}+\frac{11016}{259}a^{11}-\frac{6256}{259}a^{10}-\frac{12920}{259}a^{9}+\frac{7127}{259}a^{8}+\frac{12570}{259}a^{7}-\frac{7432}{259}a^{6}-\frac{12080}{259}a^{5}+\frac{6128}{259}a^{4}+\frac{7919}{259}a^{3}-\frac{4155}{259}a^{2}-\frac{1699}{259}a+\frac{102}{37}$, $\frac{393}{259}a^{15}-\frac{716}{259}a^{14}-\frac{257}{37}a^{13}+\frac{3190}{259}a^{12}+\frac{497}{37}a^{11}-\frac{5990}{259}a^{10}-\frac{3777}{259}a^{9}+\frac{1051}{37}a^{8}+\frac{3923}{259}a^{7}-\frac{7271}{259}a^{6}-\frac{3343}{259}a^{5}+\frac{6691}{259}a^{4}+\frac{1972}{259}a^{3}-\frac{4376}{259}a^{2}+\frac{33}{259}a+\frac{935}{259}$, $6a^{15}-\frac{43}{7}a^{14}-\frac{233}{7}a^{13}+\frac{160}{7}a^{12}+\frac{523}{7}a^{11}-\frac{225}{7}a^{10}-\frac{601}{7}a^{9}+\frac{281}{7}a^{8}+\frac{613}{7}a^{7}-\frac{267}{7}a^{6}-\frac{566}{7}a^{5}+\frac{225}{7}a^{4}+\frac{376}{7}a^{3}-\frac{153}{7}a^{2}-\frac{86}{7}a+\frac{29}{7}$, $\frac{71}{259}a^{15}-\frac{90}{259}a^{14}-\frac{330}{259}a^{13}+\frac{414}{259}a^{12}+\frac{468}{259}a^{11}-\frac{940}{259}a^{10}-\frac{5}{37}a^{9}+\frac{1558}{259}a^{8}+\frac{61}{259}a^{7}-\frac{1381}{259}a^{6}-\frac{34}{37}a^{5}+\frac{1151}{259}a^{4}-\frac{143}{259}a^{3}-\frac{1054}{259}a^{2}+\frac{459}{259}a+\frac{351}{259}$, $\frac{762}{259}a^{15}-\frac{709}{259}a^{14}-\frac{4425}{259}a^{13}+\frac{2588}{259}a^{12}+\frac{10443}{259}a^{11}-\frac{3331}{259}a^{10}-\frac{12718}{259}a^{9}+\frac{3868}{259}a^{8}+\frac{13033}{259}a^{7}-\frac{3723}{259}a^{6}-\frac{12179}{259}a^{5}+\frac{3239}{259}a^{4}+\frac{8387}{259}a^{3}-\frac{2088}{259}a^{2}-\frac{2330}{259}a+\frac{34}{37}$, $\frac{1075}{259}a^{15}-\frac{1013}{259}a^{14}-\frac{6070}{259}a^{13}+\frac{3572}{259}a^{12}+\frac{13859}{259}a^{11}-\frac{4504}{259}a^{10}-\frac{16084}{259}a^{9}+\frac{5646}{259}a^{8}+\frac{2334}{37}a^{7}-\frac{5505}{259}a^{6}-\frac{15258}{259}a^{5}+\frac{648}{37}a^{4}+\frac{10295}{259}a^{3}-\frac{400}{37}a^{2}-\frac{2452}{259}a+\frac{321}{259}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 41.5444168882 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 41.5444168882 \cdot 1}{6\cdot\sqrt{8148125331379089}}\cr\approx \mathstrut & 0.186325164731 \end{aligned}\]
Galois group
$C_2\wr D_4$ (as 16T388):
A solvable group of order 128 |
The 20 conjugacy class representatives for $C_2\wr D_4$ |
Character table for $C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), 4.0.189.1, 4.0.1197.2, 4.0.513.1, 8.0.4750893.1 x2, 8.0.30088989.1 x2, 8.0.12895281.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | 8.0.4750893.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/5.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.8.6.2 | $x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
3.8.6.2 | $x^{8} + 6 x^{5} + 6 x^{4} + 18 x^{2} + 18 x + 9$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
\(7\)
| 7.2.0.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
7.2.0.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
7.2.0.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
7.2.0.1 | $x^{2} + 6 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
7.8.6.2 | $x^{8} + 24 x^{7} + 228 x^{6} + 1080 x^{5} + 2660 x^{4} + 3408 x^{3} + 3312 x^{2} + 5184 x + 6304$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
\(19\)
| 19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |