Normalized defining polynomial
\( x^{16} - 7 x^{15} + 37 x^{14} - 125 x^{13} + 364 x^{12} - 853 x^{11} + 1800 x^{10} - 3145 x^{9} + 5181 x^{8} - 7004 x^{7} + 9317 x^{6} - 9844 x^{5} + 10325 x^{4} - 6153 x^{3} + 7724 x^{2} - 988 x + 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(812727608637355438705561=13^{6}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{26} a^{12} - \frac{2}{13} a^{11} - \frac{5}{26} a^{10} - \frac{1}{13} a^{9} - \frac{3}{13} a^{8} + \frac{9}{26} a^{7} + \frac{4}{13} a^{6} + \frac{11}{26} a^{5} - \frac{6}{13} a^{4} + \frac{1}{13} a^{3} + \frac{1}{26} a^{2} + \frac{5}{13} a - \frac{1}{2}$, $\frac{1}{26} a^{13} + \frac{5}{26} a^{11} + \frac{2}{13} a^{10} + \frac{6}{13} a^{9} + \frac{11}{26} a^{8} - \frac{4}{13} a^{7} - \frac{9}{26} a^{6} + \frac{3}{13} a^{5} + \frac{3}{13} a^{4} + \frac{9}{26} a^{3} - \frac{6}{13} a^{2} + \frac{1}{26} a$, $\frac{1}{26} a^{14} - \frac{1}{13} a^{11} - \frac{1}{13} a^{10} - \frac{5}{26} a^{9} - \frac{2}{13} a^{8} - \frac{1}{13} a^{7} - \frac{4}{13} a^{6} - \frac{5}{13} a^{5} - \frac{9}{26} a^{4} + \frac{2}{13} a^{3} - \frac{2}{13} a^{2} + \frac{1}{13} a$, $\frac{1}{243128935246418343902} a^{15} - \frac{1028665145046993409}{121564467623209171951} a^{14} - \frac{2750113227193133241}{243128935246418343902} a^{13} - \frac{3912853228115243983}{243128935246418343902} a^{12} + \frac{50857821111839839303}{243128935246418343902} a^{11} - \frac{27344137693634405974}{121564467623209171951} a^{10} + \frac{20553420830478565799}{121564467623209171951} a^{9} + \frac{117551027427983103181}{243128935246418343902} a^{8} + \frac{45677031047227893565}{243128935246418343902} a^{7} + \frac{28880880206664662687}{243128935246418343902} a^{6} - \frac{44003730279870893275}{121564467623209171951} a^{5} - \frac{7202282525836050132}{121564467623209171951} a^{4} + \frac{90854349123419121295}{243128935246418343902} a^{3} + \frac{1284229116109274177}{243128935246418343902} a^{2} - \frac{70621001390377806897}{243128935246418343902} a + \frac{691686448787371019}{18702225788186026454}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75964.7116437 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.0.69347235737.1, 8.4.53030239093.1, 8.4.5334402749.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17 | Data not computed | ||||||