Normalized defining polynomial
\( x^{16} - 6 x^{15} + 20 x^{14} - 48 x^{13} + 84 x^{12} - 84 x^{11} + 46 x^{10} - 61 x^{8} + 174 x^{7} - 212 x^{6} + 96 x^{5} + 45 x^{4} - 90 x^{3} + 173 x^{2} - 234 x + 169 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(81094542259068665856=2^{16}\cdot 3^{8}\cdot 659^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 659$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7531} a^{14} + \frac{118}{443} a^{13} + \frac{654}{7531} a^{12} + \frac{220}{443} a^{11} + \frac{3745}{7531} a^{10} - \frac{3590}{7531} a^{9} - \frac{2361}{7531} a^{8} - \frac{2400}{7531} a^{7} + \frac{3722}{7531} a^{6} - \frac{3}{443} a^{5} - \frac{3447}{7531} a^{4} + \frac{953}{7531} a^{3} + \frac{3250}{7531} a^{2} + \frac{2517}{7531} a - \frac{1234}{7531}$, $\frac{1}{940364207879473} a^{15} - \frac{2513645660}{940364207879473} a^{14} - \frac{50953599405871}{940364207879473} a^{13} - \frac{71577939655712}{940364207879473} a^{12} + \frac{281066668433986}{940364207879473} a^{11} + \frac{433604011614807}{940364207879473} a^{10} - \frac{154549072397115}{940364207879473} a^{9} - \frac{238234945376}{4255041664613} a^{8} + \frac{4248117178127}{940364207879473} a^{7} + \frac{367385176864893}{940364207879473} a^{6} - \frac{336620772200665}{940364207879473} a^{5} + \frac{250862595568434}{940364207879473} a^{4} - \frac{389699901164984}{940364207879473} a^{3} + \frac{216634620481293}{940364207879473} a^{2} - \frac{14252187249273}{55315541639969} a + \frac{35162230920877}{72335708298421}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{74856358879}{55315541639969} a^{15} - \frac{18270677950}{55315541639969} a^{14} - \frac{669595321712}{55315541639969} a^{13} + \frac{2990165899161}{55315541639969} a^{12} - \frac{7802203826321}{55315541639969} a^{11} + \frac{13894167234852}{55315541639969} a^{10} - \frac{5011407785623}{55315541639969} a^{9} - \frac{598988483101}{4255041664613} a^{8} + \frac{20366581713503}{55315541639969} a^{7} - \frac{5798425268907}{55315541639969} a^{6} + \frac{15968984254627}{55315541639969} a^{5} - \frac{13203115593497}{55315541639969} a^{4} - \frac{36613726496888}{55315541639969} a^{3} + \frac{56421462217721}{55315541639969} a^{2} - \frac{14614994916536}{55315541639969} a - \frac{238759973912}{4255041664613} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6048.2036157 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:S_4:C_2$ (as 16T724):
| A solvable group of order 384 |
| The 28 conjugacy class representatives for $C_2\times C_2^2:S_4:C_2$ |
| Character table for $C_2\times C_2^2:S_4:C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\), 8.0.9005250816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 659 | Data not computed | ||||||