Properties

Label 16.0.80798525440...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 5^{14}\cdot 53^{4}$
Root discriminant $31.20$
Ramified primes $2, 5, 53$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2^4.(C_4\times S_3)$ (as 16T725)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![76, -216, 656, -1112, 1844, -2160, 2448, -2104, 1748, -1116, 688, -320, 144, -48, 16, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 16*x^14 - 48*x^13 + 144*x^12 - 320*x^11 + 688*x^10 - 1116*x^9 + 1748*x^8 - 2104*x^7 + 2448*x^6 - 2160*x^5 + 1844*x^4 - 1112*x^3 + 656*x^2 - 216*x + 76)
 
gp: K = bnfinit(x^16 - 4*x^15 + 16*x^14 - 48*x^13 + 144*x^12 - 320*x^11 + 688*x^10 - 1116*x^9 + 1748*x^8 - 2104*x^7 + 2448*x^6 - 2160*x^5 + 1844*x^4 - 1112*x^3 + 656*x^2 - 216*x + 76, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 16 x^{14} - 48 x^{13} + 144 x^{12} - 320 x^{11} + 688 x^{10} - 1116 x^{9} + 1748 x^{8} - 2104 x^{7} + 2448 x^{6} - 2160 x^{5} + 1844 x^{4} - 1112 x^{3} + 656 x^{2} - 216 x + 76 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(807985254400000000000000=2^{24}\cdot 5^{14}\cdot 53^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{36} a^{14} - \frac{1}{18} a^{13} - \frac{1}{18} a^{12} + \frac{1}{12} a^{11} - \frac{1}{18} a^{10} + \frac{1}{12} a^{9} + \frac{1}{18} a^{8} + \frac{4}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{4}{9} a^{2} + \frac{7}{18} a + \frac{2}{9}$, $\frac{1}{23076} a^{15} - \frac{16}{1923} a^{14} + \frac{6}{641} a^{13} + \frac{2291}{23076} a^{12} - \frac{547}{11538} a^{11} - \frac{409}{23076} a^{10} - \frac{311}{11538} a^{9} + \frac{2363}{23076} a^{8} + \frac{2461}{11538} a^{7} + \frac{539}{1282} a^{6} + \frac{887}{3846} a^{5} - \frac{1097}{3846} a^{4} - \frac{1711}{5769} a^{3} + \frac{724}{1923} a^{2} + \frac{262}{1923} a + \frac{1139}{11538}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 174700.345598 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.(C_4\times S_3)$ (as 16T725):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 384
The 28 conjugacy class representatives for $C_2^4.(C_4\times S_3)$
Character table for $C_2^4.(C_4\times S_3)$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), 8.0.11236000000.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.12.11.2$x^{12} - 20$$12$$1$$11$$S_3 \times C_4$$[\ ]_{12}^{2}$
$53$53.4.0.1$x^{4} - x + 18$$1$$4$$0$$C_4$$[\ ]^{4}$
53.4.0.1$x^{4} - x + 18$$1$$4$$0$$C_4$$[\ ]^{4}$
53.8.4.1$x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$