Normalized defining polynomial
\( x^{16} + 1020 x^{14} + 387090 x^{12} + 69859800 x^{10} + 6441606000 x^{8} + 316195002000 x^{6} + 8264854521000 x^{4} + 107755895700000 x^{2} + 548093933370000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80661021875089306767964564881408000000000000=2^{44}\cdot 3^{8}\cdot 5^{12}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $554.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(2693,·)$, $\chi_{4080}(3841,·)$, $\chi_{4080}(2569,·)$, $\chi_{4080}(3437,·)$, $\chi_{4080}(1441,·)$, $\chi_{4080}(533,·)$, $\chi_{4080}(3289,·)$, $\chi_{4080}(1369,·)$, $\chi_{4080}(3677,·)$, $\chi_{4080}(2401,·)$, $\chi_{4080}(3173,·)$, $\chi_{4080}(2089,·)$, $\chi_{4080}(2477,·)$, $\chi_{4080}(2717,·)$, $\chi_{4080}(1013,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{90} a^{4}$, $\frac{1}{90} a^{5}$, $\frac{1}{270} a^{6}$, $\frac{1}{270} a^{7}$, $\frac{1}{8100} a^{8}$, $\frac{1}{8100} a^{9}$, $\frac{1}{24300} a^{10}$, $\frac{1}{24300} a^{11}$, $\frac{1}{2916000} a^{12} - \frac{1}{540} a^{6} + \frac{1}{4}$, $\frac{1}{2044116000} a^{13} - \frac{41}{4258575} a^{11} - \frac{79}{1419525} a^{9} + \frac{377}{378540} a^{7} + \frac{137}{63090} a^{5} - \frac{206}{2103} a^{3} - \frac{235}{2804} a$, $\frac{1}{5035963317852750482258172000} a^{14} - \frac{135401854806725124469}{1678654439284250160752724000} a^{12} + \frac{8463315421635941929}{2331464499005903001045450} a^{10} - \frac{237926894080364072153}{4662928998011806002090900} a^{8} - \frac{343777555128330701387}{310861933200787066806060} a^{6} - \frac{14225716450043827667}{51810322200131177801010} a^{4} + \frac{605102907765990352285}{6908042960017490373468} a^{2} + \frac{119904527137563607}{3284851621501421956}$, $\frac{1}{5035963317852750482258172000} a^{15} + \frac{6142161263033201}{104915902455265635047045250} a^{13} + \frac{18659886208635988867}{932585799602361200418180} a^{11} + \frac{59650359878957782781}{2331464499005903001045450} a^{9} + \frac{40394758475364043213}{155430966600393533403030} a^{7} + \frac{4261470539329755731}{1727010740004372593367} a^{5} - \frac{518316346787495956667}{6908042960017490373468} a^{3} + \frac{119764120252244519679}{575670246668124197789} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{74855876}$, which has order $1197694016$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2470951.49590257 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.8.1050467002880000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.31 | $x^{8} + 12 x^{6} + 6 x^{4} + 8 x^{2} + 52$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ |
| 2.8.22.31 | $x^{8} + 12 x^{6} + 6 x^{4} + 8 x^{2} + 52$ | $4$ | $2$ | $22$ | $C_8$ | $[3, 4]^{2}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||