Normalized defining polynomial
\( x^{16} - 8 x^{15} + 300 x^{14} - 1960 x^{13} + 39286 x^{12} - 210600 x^{11} + 2947164 x^{10} - 12851080 x^{9} + 138892457 x^{8} - 480701584 x^{7} + 4216870272 x^{6} - 11019895472 x^{5} + 80602553392 x^{4} - 143374847440 x^{3} + 886977486184 x^{2} - 817050280912 x + 4300996454206 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(806395379885761262339860530624200704=2^{62}\cdot 11^{8}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $175.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4576=2^{5}\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4576}(1,·)$, $\chi_{4576}(3717,·)$, $\chi_{4576}(4289,·)$, $\chi_{4576}(3145,·)$, $\chi_{4576}(2573,·)$, $\chi_{4576}(2001,·)$, $\chi_{4576}(1429,·)$, $\chi_{4576}(857,·)$, $\chi_{4576}(285,·)$, $\chi_{4576}(4005,·)$, $\chi_{4576}(3433,·)$, $\chi_{4576}(2861,·)$, $\chi_{4576}(2289,·)$, $\chi_{4576}(1717,·)$, $\chi_{4576}(1145,·)$, $\chi_{4576}(573,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{47} a^{12} - \frac{6}{47} a^{11} + \frac{20}{47} a^{10} + \frac{2}{47} a^{9} - \frac{22}{47} a^{8} + \frac{10}{47} a^{7} - \frac{5}{47} a^{6} - \frac{2}{47} a^{5} + \frac{21}{47} a^{4} - \frac{17}{47} a^{3} - \frac{12}{47} a^{2} + \frac{10}{47} a - \frac{22}{47}$, $\frac{1}{799} a^{13} + \frac{2}{799} a^{12} + \frac{19}{799} a^{11} + \frac{256}{799} a^{10} - \frac{335}{799} a^{9} - \frac{354}{799} a^{8} + \frac{75}{799} a^{7} + \frac{52}{799} a^{6} - \frac{324}{799} a^{5} - \frac{84}{799} a^{4} + \frac{40}{799} a^{3} + \frac{337}{799} a^{2} + \frac{199}{799} a - \frac{129}{799}$, $\frac{1}{2156819527391553759735503} a^{14} - \frac{7}{2156819527391553759735503} a^{13} - \frac{12070779545929971849638}{2156819527391553759735503} a^{12} + \frac{4260275133857637123407}{126871736905385515278559} a^{11} - \frac{812313006598557834617951}{2156819527391553759735503} a^{10} - \frac{915966896816466798112342}{2156819527391553759735503} a^{9} + \frac{540909909992023190828595}{2156819527391553759735503} a^{8} - \frac{184805863821021352033939}{2156819527391553759735503} a^{7} + \frac{19366995753445691329915}{45889777178543697015649} a^{6} + \frac{605528098608476343552236}{2156819527391553759735503} a^{5} - \frac{668088631042272735066302}{2156819527391553759735503} a^{4} - \frac{534132927927555692211332}{2156819527391553759735503} a^{3} + \frac{1049876992331890506627664}{2156819527391553759735503} a^{2} - \frac{51610372868112980720909}{2156819527391553759735503} a + \frac{202561557988265433714118}{2156819527391553759735503}$, $\frac{1}{65773714791016023816104699630591} a^{15} + \frac{15247841}{65773714791016023816104699630591} a^{14} + \frac{210454571739635565792570922}{3869042046530354342123805860623} a^{13} - \frac{207308647970468732393317867717}{65773714791016023816104699630591} a^{12} + \frac{31047279610989557356690608576642}{65773714791016023816104699630591} a^{11} - \frac{12382206222970401993749052146120}{65773714791016023816104699630591} a^{10} - \frac{16134215170388372769213422283143}{65773714791016023816104699630591} a^{9} - \frac{15296893970183711765181941966797}{65773714791016023816104699630591} a^{8} + \frac{553778808004125550104591833797}{65773714791016023816104699630591} a^{7} - \frac{8093474495690253107261510827653}{65773714791016023816104699630591} a^{6} + \frac{6691574696031137046483272894486}{65773714791016023816104699630591} a^{5} + \frac{6720739108314702488706442962260}{65773714791016023816104699630591} a^{4} - \frac{12944638948548513605184350915126}{65773714791016023816104699630591} a^{3} - \frac{27234892459785132201140136054754}{65773714791016023816104699630591} a^{2} + \frac{17777058865459594379808423706109}{65773714791016023816104699630591} a + \frac{17838438497638117884915615142373}{65773714791016023816104699630591}$
Class group and class number
$C_{3}\times C_{3}\times C_{2399280}$, which has order $21593520$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||