Normalized defining polynomial
\( x^{16} - 4 x^{15} - 251 x^{14} + 896 x^{13} + 16630 x^{12} - 93666 x^{11} + 286426 x^{10} + 3506890 x^{9} - 13540961 x^{8} + 205373656 x^{7} - 797038879 x^{6} - 9149326000 x^{5} - 11184167097 x^{4} + 91847336586 x^{3} + 4606618252806 x^{2} + 14259307873786 x + 62802119569213 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(803416469975725073264940954221144185207724929=37^{12}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $640.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{74} a^{8} - \frac{1}{37} a^{7} + \frac{1}{37} a^{6} + \frac{4}{37} a^{5} - \frac{33}{74} a^{4} - \frac{18}{37} a^{3} - \frac{15}{74} a^{2} + \frac{25}{74} a + \frac{5}{37}$, $\frac{1}{74} a^{9} - \frac{1}{37} a^{7} + \frac{6}{37} a^{6} - \frac{17}{74} a^{5} - \frac{14}{37} a^{4} - \frac{13}{74} a^{3} - \frac{5}{74} a^{2} - \frac{7}{37} a + \frac{10}{37}$, $\frac{1}{74} a^{10} + \frac{4}{37} a^{7} - \frac{13}{74} a^{6} - \frac{6}{37} a^{5} - \frac{5}{74} a^{4} - \frac{3}{74} a^{3} + \frac{15}{37} a^{2} - \frac{2}{37} a + \frac{10}{37}$, $\frac{1}{74} a^{11} + \frac{3}{74} a^{7} - \frac{14}{37} a^{6} + \frac{5}{74} a^{5} - \frac{35}{74} a^{4} + \frac{11}{37} a^{3} - \frac{16}{37} a^{2} - \frac{16}{37} a - \frac{3}{37}$, $\frac{1}{222} a^{12} + \frac{1}{222} a^{11} + \frac{1}{222} a^{9} + \frac{8}{111} a^{7} - \frac{91}{222} a^{6} + \frac{1}{74} a^{5} - \frac{15}{37} a^{4} + \frac{8}{37} a^{3} - \frac{49}{111} a^{2} + \frac{29}{111} a + \frac{95}{222}$, $\frac{1}{222} a^{13} - \frac{1}{222} a^{11} + \frac{1}{222} a^{10} - \frac{1}{222} a^{9} + \frac{1}{222} a^{8} + \frac{17}{111} a^{7} + \frac{32}{111} a^{6} + \frac{3}{74} a^{5} - \frac{11}{74} a^{4} + \frac{61}{222} a^{3} - \frac{21}{74} a^{2} - \frac{5}{222} a + \frac{44}{111}$, $\frac{1}{54296389704} a^{14} - \frac{2712153}{4524699142} a^{13} + \frac{12083437}{27148194852} a^{12} + \frac{474457}{366867498} a^{11} - \frac{15658889}{6787048713} a^{10} + \frac{99490565}{27148194852} a^{9} - \frac{153920443}{27148194852} a^{8} - \frac{1360455940}{6787048713} a^{7} - \frac{29269557}{18098796568} a^{6} - \frac{716610237}{4524699142} a^{5} + \frac{2237280251}{27148194852} a^{4} - \frac{1118608845}{2262349571} a^{3} - \frac{22727193323}{54296389704} a^{2} + \frac{382156769}{27148194852} a + \frac{2834743041}{18098796568}$, $\frac{1}{8401503432935691167337782621290875109195320771798158227762539370424496} a^{15} + \frac{57233855170940873703313660896825653806947096248021156533297}{8401503432935691167337782621290875109195320771798158227762539370424496} a^{14} + \frac{3602330584964228327550953630888341297599829379512215307181213310655}{4200751716467845583668891310645437554597660385899079113881269685212248} a^{13} - \frac{3122266035787866672421635635931433975224712075526198163537441058447}{1400250572155948527889630436881812518199220128633026371293756561737416} a^{12} - \frac{1750231828891284195591649644066006685283440393193710067769543925853}{700125286077974263944815218440906259099610064316513185646878280868708} a^{11} + \frac{3513998389830209337103144674696495643234162535878739943108963505203}{1400250572155948527889630436881812518199220128633026371293756561737416} a^{10} + \frac{1068224436295546557306667073622101186549221646982408563073621373691}{2100375858233922791834445655322718777298830192949539556940634842606124} a^{9} + \frac{15657507904198888590519687301146549195075532775225633689607864560339}{4200751716467845583668891310645437554597660385899079113881269685212248} a^{8} - \frac{1931785928073884223861810548073437327298702808853959335471467539122371}{8401503432935691167337782621290875109195320771798158227762539370424496} a^{7} + \frac{145927151114311701558599303219754146154275040891990286489538546616043}{2800501144311897055779260873763625036398440257266052742587513123474832} a^{6} + \frac{1731706624226267470463909722941081657383276620958831726477240617823357}{4200751716467845583668891310645437554597660385899079113881269685212248} a^{5} - \frac{49119655500387345089435823136489311748330049135856877549674880137955}{113533830174806637396456521909336150124261091510785921996791072573304} a^{4} + \frac{2014485666854541798180976721702857354468415732676928445282982591766657}{8401503432935691167337782621290875109195320771798158227762539370424496} a^{3} + \frac{174351623549836765336582391296445260101547296125215038676268738315975}{8401503432935691167337782621290875109195320771798158227762539370424496} a^{2} + \frac{164493924551872540635697580908562090043337398530652956993023744621285}{8401503432935691167337782621290875109195320771798158227762539370424496} a - \frac{841792445069194674787627229040740912344602714217423021734582742359951}{2800501144311897055779260873763625036398440257266052742587513123474832}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{328}$, which has order $2624$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1747700266780 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.20704603455949352617.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |