Normalized defining polynomial
\( x^{16} - 8 x^{15} + 104 x^{14} - 588 x^{13} + 17698 x^{12} - 98908 x^{11} + 1060966 x^{10} - 4411234 x^{9} + 30357096 x^{8} - 96026660 x^{7} + 488894886 x^{6} - 1148053948 x^{5} + 4600537631 x^{4} - 7391392826 x^{3} + 23803505264 x^{2} - 20284389474 x + 51165489031 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(803416469975725073264940954221144185207724929=37^{12}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $640.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{74} a^{4} - \frac{1}{37} a^{3} + \frac{10}{37} a^{2} - \frac{19}{74} a + \frac{7}{74}$, $\frac{1}{74} a^{5} + \frac{8}{37} a^{3} + \frac{21}{74} a^{2} - \frac{31}{74} a + \frac{7}{37}$, $\frac{1}{74} a^{6} - \frac{21}{74} a^{3} + \frac{19}{74} a^{2} + \frac{11}{37} a + \frac{18}{37}$, $\frac{1}{74} a^{7} - \frac{23}{74} a^{3} - \frac{1}{37} a^{2} + \frac{7}{74} a - \frac{1}{74}$, $\frac{1}{32856} a^{8} - \frac{1}{8214} a^{7} + \frac{11}{8214} a^{6} - \frac{59}{16428} a^{5} - \frac{7}{8214} a^{4} + \frac{31}{4107} a^{3} - \frac{9719}{32856} a^{2} + \frac{399}{1369} a + \frac{7375}{32856}$, $\frac{1}{32856} a^{9} + \frac{7}{8214} a^{7} + \frac{29}{16428} a^{6} - \frac{7}{4107} a^{5} + \frac{17}{4107} a^{4} - \frac{541}{10952} a^{3} + \frac{1610}{4107} a^{2} - \frac{941}{32856} a + \frac{715}{8214}$, $\frac{1}{32856} a^{10} + \frac{85}{16428} a^{7} + \frac{11}{8214} a^{6} - \frac{14}{4107} a^{5} + \frac{49}{32856} a^{4} - \frac{3733}{8214} a^{3} + \frac{3225}{10952} a^{2} - \frac{2825}{8214} a - \frac{1231}{8214}$, $\frac{1}{32856} a^{11} - \frac{41}{8214} a^{7} - \frac{11}{8214} a^{6} + \frac{43}{10952} a^{5} + \frac{5}{4107} a^{4} + \frac{15023}{32856} a^{3} - \frac{3155}{16428} a^{2} + \frac{935}{8214} a - \frac{3277}{16428}$, $\frac{1}{77803008} a^{12} - \frac{1}{12967168} a^{11} + \frac{3}{3241792} a^{10} - \frac{305}{77803008} a^{9} - \frac{383}{77803008} a^{8} + \frac{103}{2431344} a^{7} - \frac{76601}{77803008} a^{6} + \frac{54263}{19450752} a^{5} - \frac{22995}{25934336} a^{4} - \frac{219361}{77803008} a^{3} + \frac{5657403}{25934336} a^{2} - \frac{16826989}{77803008} a + \frac{20888323}{77803008}$, $\frac{1}{77803008} a^{13} + \frac{3}{6483584} a^{11} + \frac{127}{77803008} a^{10} + \frac{155}{77803008} a^{9} + \frac{499}{38901504} a^{8} + \frac{9479}{77803008} a^{7} - \frac{17535}{12967168} a^{6} + \frac{49327}{77803008} a^{5} - \frac{103741}{25934336} a^{4} - \frac{1669831}{25934336} a^{3} + \frac{5207955}{25934336} a^{2} + \frac{28094261}{77803008} a - \frac{19111543}{38901504}$, $\frac{1}{77803008} a^{14} + \frac{343}{77803008} a^{11} - \frac{23}{25934336} a^{10} + \frac{23}{12967168} a^{9} - \frac{413}{77803008} a^{8} - \frac{29053}{38901504} a^{7} + \frac{131123}{77803008} a^{6} + \frac{323929}{77803008} a^{5} - \frac{67675}{25934336} a^{4} + \frac{7861599}{25934336} a^{3} - \frac{17632879}{77803008} a^{2} + \frac{223857}{12967168} a + \frac{4830149}{19450752}$, $\frac{1}{3130870844928} a^{15} + \frac{20113}{3130870844928} a^{14} - \frac{415}{130452951872} a^{13} - \frac{29}{16306618984} a^{12} - \frac{2471093}{782717711232} a^{11} + \frac{39827621}{3130870844928} a^{10} + \frac{552405}{260905903744} a^{9} - \frac{16846007}{1565435422464} a^{8} - \frac{16820104031}{3130870844928} a^{7} + \frac{9965123819}{3130870844928} a^{6} - \frac{1248681073}{782717711232} a^{5} + \frac{6072986611}{3130870844928} a^{4} - \frac{171901358465}{1043623614976} a^{3} + \frac{4833102981}{130452951872} a^{2} + \frac{944181507677}{3130870844928} a - \frac{204083628651}{1043623614976}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{328}$, which has order $2624$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1782108537960 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.0.20704603455949352617.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |