Properties

Label 16.0.80320700706...000.14
Degree $16$
Signature $[0, 8]$
Discriminant $2^{48}\cdot 5^{12}\cdot 43^{8}$
Root discriminant $175.41$
Ramified primes $2, 5, 43$
Class number $12960000$ (GRH)
Class group $[3, 30, 120, 1200]$ (GRH)
Galois group $C_4^2$ (as 16T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2944652568001, 0, 723888668752, 0, 90249360616, 0, 6316872536, 0, 251569339, 0, 5652768, 0, 69404, 0, 424, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 424*x^14 + 69404*x^12 + 5652768*x^10 + 251569339*x^8 + 6316872536*x^6 + 90249360616*x^4 + 723888668752*x^2 + 2944652568001)
 
gp: K = bnfinit(x^16 + 424*x^14 + 69404*x^12 + 5652768*x^10 + 251569339*x^8 + 6316872536*x^6 + 90249360616*x^4 + 723888668752*x^2 + 2944652568001, 1)
 

Normalized defining polynomial

\( x^{16} + 424 x^{14} + 69404 x^{12} + 5652768 x^{10} + 251569339 x^{8} + 6316872536 x^{6} + 90249360616 x^{4} + 723888668752 x^{2} + 2944652568001 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(803207007062310661390336000000000000=2^{48}\cdot 5^{12}\cdot 43^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $175.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3440=2^{4}\cdot 5\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{3440}(1,·)$, $\chi_{3440}(3267,·)$, $\chi_{3440}(3269,·)$, $\chi_{3440}(1547,·)$, $\chi_{3440}(1549,·)$, $\chi_{3440}(2063,·)$, $\chi_{3440}(2581,·)$, $\chi_{3440}(343,·)$, $\chi_{3440}(861,·)$, $\chi_{3440}(2407,·)$, $\chi_{3440}(2409,·)$, $\chi_{3440}(2923,·)$, $\chi_{3440}(687,·)$, $\chi_{3440}(689,·)$, $\chi_{3440}(1203,·)$, $\chi_{3440}(1721,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{1715999} a^{11} - \frac{158528}{1715999} a^{9} + \frac{840487}{1715999} a^{7} - \frac{343583}{1715999} a^{5} + \frac{280430}{1715999} a^{3} + \frac{460128}{1715999} a$, $\frac{1}{4151001581} a^{12} - \frac{489218243}{4151001581} a^{10} + \frac{1740863473}{4151001581} a^{8} + \frac{2038263229}{4151001581} a^{6} - \frac{1133994909}{4151001581} a^{4} - \frac{1154407199}{4151001581} a^{2} + \frac{685}{2419}$, $\frac{1}{4151001581} a^{13} + \frac{317}{4151001581} a^{11} + \frac{63521616}{4151001581} a^{9} - \frac{1885507168}{4151001581} a^{7} - \frac{1807475956}{4151001581} a^{5} - \frac{195878449}{4151001581} a^{3} - \frac{331701054}{4151001581} a$, $\frac{1}{112498311904673869160663635859} a^{14} - \frac{13367451685650883783}{112498311904673869160663635859} a^{12} + \frac{7865823855013807800718713054}{112498311904673869160663635859} a^{10} + \frac{14824778139450052794118263883}{112498311904673869160663635859} a^{8} + \frac{29429123350622074768917107952}{112498311904673869160663635859} a^{6} - \frac{41375080475054947538119781122}{112498311904673869160663635859} a^{4} - \frac{18147374814408356492214633198}{112498311904673869160663635859} a^{2} - \frac{15815719974539426}{38204273443723859}$, $\frac{1}{112498311904673869160663635859} a^{15} - \frac{13367451685650883783}{112498311904673869160663635859} a^{13} - \frac{15495094543177128444408}{112498311904673869160663635859} a^{11} + \frac{39316120710948092152556538663}{112498311904673869160663635859} a^{9} - \frac{30491341102371147495691766048}{112498311904673869160663635859} a^{7} - \frac{19640538177859772500741755533}{112498311904673869160663635859} a^{5} + \frac{31423501145953428121990221414}{112498311904673869160663635859} a^{3} - \frac{25530137211858706849186}{65558495025156698320141} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{30}\times C_{120}\times C_{1200}$, which has order $12960000$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 12198.951274811623 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4^2$ (as 16T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_4^2$
Character table for $C_4^2$

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\zeta_{16})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), 4.4.51200.1, 4.0.473344000.4, 4.0.473344000.2, 4.0.3698000.1, 4.0.14792000.2, 8.8.2621440000.1, 8.0.224054542336000000.14, 8.0.3500852224000000.23

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$43$43.8.4.1$x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
43.8.4.1$x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$