Normalized defining polynomial
\( x^{16} - 8 x^{15} + 92 x^{14} - 504 x^{13} + 3674 x^{12} - 15856 x^{11} + 91312 x^{10} - 322272 x^{9} + 1555101 x^{8} - 4442312 x^{7} + 18083476 x^{6} - 39901264 x^{5} + 135999792 x^{4} - 210112840 x^{3} + 592976072 x^{2} - 493914464 x + 1140903199 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80320700706231066139033600000000=2^{44}\cdot 5^{8}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3440=2^{4}\cdot 5\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3440}(1,·)$, $\chi_{3440}(3269,·)$, $\chi_{3440}(3009,·)$, $\chi_{3440}(1289,·)$, $\chi_{3440}(1549,·)$, $\chi_{3440}(429,·)$, $\chi_{3440}(2321,·)$, $\chi_{3440}(2581,·)$, $\chi_{3440}(601,·)$, $\chi_{3440}(861,·)$, $\chi_{3440}(2149,·)$, $\chi_{3440}(2409,·)$, $\chi_{3440}(3181,·)$, $\chi_{3440}(689,·)$, $\chi_{3440}(1461,·)$, $\chi_{3440}(1721,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{352253076121449589954} a^{14} - \frac{1}{50321868017349941422} a^{13} - \frac{39792934203486673465}{352253076121449589954} a^{12} + \frac{31315533580097622952}{176126538060724794977} a^{11} - \frac{1195350605115440084}{176126538060724794977} a^{10} - \frac{31569709205957550506}{176126538060724794977} a^{9} + \frac{42281299634622379301}{352253076121449589954} a^{8} - \frac{79053088834599987882}{176126538060724794977} a^{7} + \frac{437303270715654260}{176126538060724794977} a^{6} + \frac{71306387056980862274}{176126538060724794977} a^{5} - \frac{171758615033581482755}{352253076121449589954} a^{4} - \frac{9732703003388824577}{25160934008674970711} a^{3} + \frac{40591713228607858115}{352253076121449589954} a^{2} + \frac{106327689836314345883}{352253076121449589954} a + \frac{775157039879170775}{5681501227765315967}$, $\frac{1}{2884857232851043228884382466} a^{15} + \frac{4094857}{2884857232851043228884382466} a^{14} + \frac{41409354656796995876566179}{1442428616425521614442191233} a^{13} + \frac{9973012026853252622249288}{1442428616425521614442191233} a^{12} + \frac{452686690719775482753277795}{2884857232851043228884382466} a^{11} + \frac{72319925188537416340212603}{1442428616425521614442191233} a^{10} + \frac{64649335331969299014246966}{1442428616425521614442191233} a^{9} + \frac{287337693805191047530685939}{2884857232851043228884382466} a^{8} - \frac{962156310085515795730412243}{2884857232851043228884382466} a^{7} - \frac{283695554840514947928356018}{1442428616425521614442191233} a^{6} - \frac{472015788196529017135098224}{1442428616425521614442191233} a^{5} + \frac{1286469888292689694523996975}{2884857232851043228884382466} a^{4} - \frac{133839018239282668224454622}{1442428616425521614442191233} a^{3} - \frac{779189447933452929556714001}{2884857232851043228884382466} a^{2} + \frac{44086406956905041545513156}{1442428616425521614442191233} a - \frac{318649346329331804624851}{93059910737130426738205886}$
Class group and class number
$C_{5}\times C_{60900}$, which has order $304500$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12198.951274811623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.2 | $x^{8} + 10 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $43$ | 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 43.8.4.1 | $x^{8} + 73960 x^{4} - 79507 x^{2} + 1367520400$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |