Normalized defining polynomial
\( x^{16} - 3 x^{15} + 37 x^{14} - 250 x^{13} + 1434 x^{12} - 6102 x^{11} + 23233 x^{10} - 55975 x^{9} + 123893 x^{8} - 118276 x^{7} + 275740 x^{6} - 100624 x^{5} + 581200 x^{4} + 749376 x^{3} - 149248 x^{2} + 188416 x + 262144 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(800737337114777368288115578449=3^{8}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{3}{16} a^{5} + \frac{3}{16} a^{4} - \frac{1}{16} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{192} a^{12} - \frac{5}{192} a^{11} + \frac{1}{64} a^{10} - \frac{1}{48} a^{9} - \frac{3}{32} a^{8} - \frac{1}{96} a^{7} + \frac{15}{64} a^{6} + \frac{7}{192} a^{5} - \frac{37}{192} a^{4} + \frac{17}{96} a^{3} + \frac{7}{16} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{768} a^{13} - \frac{1}{768} a^{12} - \frac{17}{768} a^{11} + \frac{7}{96} a^{10} - \frac{17}{384} a^{9} - \frac{13}{384} a^{8} - \frac{11}{768} a^{7} - \frac{53}{768} a^{6} + \frac{45}{256} a^{5} - \frac{3}{128} a^{4} - \frac{5}{192} a^{3} - \frac{1}{16} a^{2} - \frac{5}{12} a + \frac{1}{3}$, $\frac{1}{102833664} a^{14} - \frac{51353}{102833664} a^{13} + \frac{154087}{102833664} a^{12} + \frac{63079}{2142368} a^{11} + \frac{1790565}{17138944} a^{10} - \frac{1082807}{17138944} a^{9} - \frac{3598665}{34277888} a^{8} - \frac{8266285}{102833664} a^{7} - \frac{11672929}{102833664} a^{6} + \frac{9047011}{51416832} a^{5} + \frac{5557367}{25708416} a^{4} - \frac{357119}{6427104} a^{3} + \frac{112799}{803388} a^{2} + \frac{18365}{267796} a + \frac{16382}{200847}$, $\frac{1}{257920843612230179639242404421632} a^{15} + \frac{126626448934918306001167}{85973614537410059879747468140544} a^{14} + \frac{37551170710823427548948435029}{257920843612230179639242404421632} a^{13} - \frac{154608317233388349972900242309}{128960421806115089819621202210816} a^{12} - \frac{423338691874953983654662874723}{128960421806115089819621202210816} a^{11} - \frac{9506907235539702887480540458331}{128960421806115089819621202210816} a^{10} - \frac{22007536082076995069750897553119}{257920843612230179639242404421632} a^{9} - \frac{5507039651258892717436265390461}{85973614537410059879747468140544} a^{8} - \frac{20859601761759786571347732538651}{257920843612230179639242404421632} a^{7} - \frac{8288061278081489895582160944197}{64480210903057544909810601105408} a^{6} + \frac{8841524905954804512947619879031}{64480210903057544909810601105408} a^{5} - \frac{2334095001086766145666850203985}{16120052725764386227452650276352} a^{4} + \frac{4583012220370273925455279376429}{16120052725764386227452650276352} a^{3} - \frac{236135595721325880961803983731}{4030013181441096556863162569088} a^{2} - \frac{174555886077353655838348567159}{1007503295360274139215790642272} a + \frac{8220040866245521852199863679}{31484477980008566850493457571}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18439819587700349913463}{3852497327999375340023635968} a^{15} - \frac{74825824784162538623749}{3852497327999375340023635968} a^{14} + \frac{250117909405872326867505}{1284165775999791780007878656} a^{13} - \frac{2684332261082741270064235}{1926248663999687670011817984} a^{12} + \frac{15855785331725955672177067}{1926248663999687670011817984} a^{11} - \frac{71614528428560019592933853}{1926248663999687670011817984} a^{10} + \frac{563718753153963304419729271}{3852497327999375340023635968} a^{9} - \frac{519640758846293059440619883}{1284165775999791780007878656} a^{8} + \frac{1222739099617951494456475201}{1284165775999791780007878656} a^{7} - \frac{1351242251808064830702549919}{963124331999843835005908992} a^{6} + \frac{2334550280923923409716149057}{963124331999843835005908992} a^{5} - \frac{629389218656614501509898783}{240781082999960958751477248} a^{4} + \frac{1107296633680051194307328755}{240781082999960958751477248} a^{3} - \frac{25952723125308525505563629}{60195270749990239687869312} a^{2} - \frac{29490615235047830208734881}{15048817687497559921967328} a + \frac{378322088213908453639368}{156758517578099582520493} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 774296732.554 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_8: C_2$ |
| Character table for $C_8: C_2$ |
Intermediate fields
| \(\Q(\sqrt{-219}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{73})\), 4.4.389017.1, 4.0.3501153.1, 8.0.12258072329409.1, 8.4.99426586671873.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.1 | $x^{8} - 73$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |