Normalized defining polynomial
\( x^{16} - 5 x^{15} + 14 x^{14} - 29 x^{13} + 65 x^{12} - 118 x^{11} + 136 x^{10} - 18 x^{9} - 207 x^{8} + 328 x^{7} - 110 x^{6} - 201 x^{5} + 377 x^{4} - 315 x^{3} + 254 x^{2} - 112 x + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(800394260737600000000=2^{12}\cdot 5^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{12} + \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{2}{7} a^{2} - \frac{1}{7} a$, $\frac{1}{8897} a^{14} + \frac{163}{8897} a^{13} + \frac{3453}{8897} a^{12} + \frac{1976}{8897} a^{11} - \frac{3233}{8897} a^{10} - \frac{348}{8897} a^{9} + \frac{4068}{8897} a^{8} - \frac{2750}{8897} a^{7} - \frac{925}{8897} a^{6} + \frac{3314}{8897} a^{5} + \frac{4436}{8897} a^{4} + \frac{1396}{8897} a^{3} + \frac{3575}{8897} a^{2} + \frac{4266}{8897} a - \frac{567}{1271}$, $\frac{1}{109454918015233} a^{15} - \frac{3657657827}{109454918015233} a^{14} + \frac{5853922024758}{109454918015233} a^{13} + \frac{4708125478497}{15636416859319} a^{12} - \frac{48943016887313}{109454918015233} a^{11} - \frac{37795690601488}{109454918015233} a^{10} + \frac{3287535786669}{15636416859319} a^{9} - \frac{2213189357257}{15636416859319} a^{8} - \frac{4695943574416}{109454918015233} a^{7} + \frac{17131038068310}{109454918015233} a^{6} - \frac{28306262859977}{109454918015233} a^{5} + \frac{6962517139851}{15636416859319} a^{4} - \frac{32624772046999}{109454918015233} a^{3} + \frac{11265909530149}{109454918015233} a^{2} - \frac{1182780137194}{3530803806943} a + \frac{2593162217589}{15636416859319}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3793.72993285 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $D_8:C_2$ |
| Character table for $D_8:C_2$ |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), 4.4.4205.1 x2, 4.4.725.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 8.8.442050625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.5 | $x^{8} + 6 x^{6} + 8 x^{5} + 80$ | $2$ | $4$ | $12$ | $C_8$ | $[3]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |