Normalized defining polynomial
\( x^{16} - x^{15} - 6 x^{14} + 13 x^{13} + 20 x^{12} - 56 x^{11} - 9 x^{10} + 112 x^{9} - 32 x^{8} - 51 x^{7} + 90 x^{6} - 246 x^{5} + 241 x^{4} - 20 x^{2} - 50 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7947193069254687890625=3^{8}\cdot 5^{8}\cdot 1327^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 1327$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} - \frac{1}{3} a^{11} - \frac{1}{2} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{11} - \frac{1}{2} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{690} a^{14} + \frac{7}{345} a^{13} - \frac{7}{230} a^{12} + \frac{113}{690} a^{11} + \frac{1}{3} a^{10} + \frac{93}{230} a^{9} - \frac{103}{230} a^{8} - \frac{1}{5} a^{7} + \frac{11}{230} a^{6} + \frac{33}{230} a^{5} - \frac{10}{69} a^{4} - \frac{101}{690} a^{3} - \frac{49}{690} a^{2} + \frac{14}{69} a - \frac{47}{138}$, $\frac{1}{2489540094870} a^{15} + \frac{77655733}{829846698290} a^{14} + \frac{136401747059}{2489540094870} a^{13} + \frac{4920479461}{108240873690} a^{12} + \frac{97599323039}{497908018974} a^{11} + \frac{161277385799}{2489540094870} a^{10} - \frac{200486543323}{829846698290} a^{9} + \frac{367607481529}{829846698290} a^{8} - \frac{124806059419}{829846698290} a^{7} - \frac{197950208287}{829846698290} a^{6} - \frac{157583845457}{497908018974} a^{5} + \frac{410780925913}{829846698290} a^{4} + \frac{32482610817}{829846698290} a^{3} - \frac{226778557201}{497908018974} a^{2} - \frac{33512776585}{497908018974} a - \frac{110638833829}{248954009487}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2852920022}{54120436845} a^{15} - \frac{929538031}{54120436845} a^{14} - \frac{36526166531}{108240873690} a^{13} + \frac{3325666865}{7216058246} a^{12} + \frac{76859270018}{54120436845} a^{11} - \frac{225018097799}{108240873690} a^{10} - \frac{75831211061}{36080291230} a^{9} + \frac{52281658724}{10824087369} a^{8} + \frac{195722636221}{108240873690} a^{7} - \frac{241195841273}{108240873690} a^{6} + \frac{166110347134}{54120436845} a^{5} - \frac{387100998593}{36080291230} a^{4} + \frac{172527549509}{36080291230} a^{3} + \frac{277639303931}{54120436845} a^{2} + \frac{15684296857}{21648174738} a - \frac{33426682505}{21648174738} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32330.2911008 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:S_4:C_2$ (as 16T724):
| A solvable group of order 384 |
| The 28 conjugacy class representatives for $C_2\times C_2^2:S_4:C_2$ |
| Character table for $C_2\times C_2^2:S_4:C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 8.0.9905225625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 1327 | Data not computed | ||||||